138 research outputs found

    Effects of low-dose/high-dose-rate X-irradiation on oxidative stress in organs following forced swim test and its combined effects on alcohol-induced liver damage in mice

    Get PDF
    The liver's susceptibility to oxidative stress after a combination of forced swim test (FST) and low-dose-rate gamma-irradiation has been observed. Therefore, this study aims to clarify the effects of low-dose (0.1 and 0.5 Gy)/high-dose-rate (1.2 Gy/min) irradiation on combined oxidative stressors-liver damage associated with FST and alcohol administration. In addition, the effects of similar irradiation on FST-induced immobility, which induces psychomotor retardation, and antioxidative effects on the brain, lungs, liver and kidneys were investigated, and the results were compared with those of a similar previous study that utilized low-dose-rate irradiation. Low-dose/high-dose-rate (especially 0.5 Gy) irradiation temporarily worsened liver antioxidant function and hepatic function with FST- and alcohol administration-related oxidative damage; however, the damages improved soon after. In addition, the increase in total glutathione content in the liver contributed to the early improvement of hepatic functions. However, pre-irradiation did not suppress immobility during the FST. The results also suggested that the effects of low-dose/high-dose-rate irradiation on the antioxidant functions of each organ after the FST were different from those of low-dose/low-dose-rate irradiation. Overall, this study provides further insights into the effects of low-dose irradiation on exposure to a combination of different oxidative stressors. It will also contribute to the elucidation of dose rate effects on oxidative stress in the low-dose irradiation range

    Immunomodulatory Effects of Radon Inhalation on Lipopolysaccharide-Induced Inflammation in Mice

    Get PDF
    Typical indications for radon therapy include autoimmune diseases such as rheumatoid arthritis (RA). We had previously reported that radon inhalation inhibits Th17 immune responses in RA mice by activating Th1 and Th2 immune responses. However, there are no reports on how radon inhalation affects the activated Th1 and Th17 immune responses, and these findings may be useful for identifying new indications for radon therapy. Therefore, in this study, we investigated the effect of radon inhalation on the lipopolysaccharide (LPS)-induced inflammatory response, focusing on the expression of related cytokines and antioxidant function. Male BALB/c mice were exposed to 2000 Bq/m(3) radon for one day. Immediately after radon inhalation, LPS was administered intraperitoneally at 1.0 mg/kg body weight for 4 h. LPS administration increased the levels of Th1- and Th17-prone cytokines, such as interleukin-2, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor, compared to no treatment control (sham). However, these effects were suppressed by radon inhalation. IL-10 levels were significantly increased by LPS administration, with or without radon inhalation, compared to sham. However, radon inhalation did not inhibit oxidative stress induced by LPS administration. These findings suggest that radon inhalation has immunomodulatory but not antioxidative functions in LPS-induced injury

    Texture Indices of 18F-FDG PET/CT for Differentiating Squamous Cell Carcinoma and Non-Hodgkin’s Lymphoma of the Oropharynx

    Get PDF
    We assessed the role of 18F-FDG PET/CT texture indices for the differentiation of squamous cell carcinoma (SCC) and non-Hodgkin’s lymphoma (NHL) in the oropharynx. 18F-FDG PET/CT data for 27 patients with SCC and 25 patients with NHL in the oropharynx were investigated. The maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and six texture indices (homogeneity, entropy, short-run emphasis, long-run emphasis, low gray-level zone emphasis [LGZE], and high graylevel zone emphasis [HGZE]) were derived from PET images. PET/CT parameters of the SCC patients were compared with those of the NHL patients. The diagnostic accuracy of the indices for differentiating SCC from NHL was calculated by a receiver operating characteristic curve analysis. 18F-FDG uptake in the oropharynx was observed in all of the patients. The SUVmax, MTV, and TLG did not differ significantly between the SCC and NHL groups, but two of the six texture indices (LGZE [p=0.004] and HGZE [p=0.03]) showed significant differences between the groups. LGZE was the best discriminative index for the differentiation of SCC and NHL (55.6% sensitivity, 88.0% specificity). The LGZE and HGZE texture indices derived from 18F-FDG PET/CT images may be useful in differentiating SCC and NHL in the oropharynx

    Remarkable features of ovarian morphology and reproductive hormones in insulin-resistant Zucker fatty (fa/fa) rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Zucker fatty (fa/fa) rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance.</p> <p>Methods</p> <p>In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7).</p> <p>Results</p> <p>Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks) and androstenedione (all weeks) than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats.</p> <p>Conclusions</p> <p>Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats.</p

    CCL13 is a promising diagnostic marker for systemic sclerosis.

    Get PDF
    Summary Background Previous studies suggest that CCL13 may have some role in the pathogenesis of systemic sclerosis (SSc). Objectives To determine serum levels of CCL13 and its clinical associations in patients with SSc. Methods Serum CCL13 levels were examined by enzyme-linked immunosorbent assay in 80 patients with SSc, 20 patients with systemic lupus erythematosus (SLE), 20 patients with dermatomyositis (DM), 29 patients with atopic dermatitis (AD) and 50 healthy individuals. Results Mean +/- SD serum CCL13 levels were elevated in patients with SSc (81.3 +/- 55.8 pg mL(-1)) compared with healthy controls (15.0 +/- 9.9 pg mL(-1); P < 0.001) and patients with SLE (22.0 +/- 6.9 pg mL(-1); P < 0.001), DM (24.4 +/- 36.1 pg mL(-1); P < 0.001) and AD (18.0 +/- 6.4 pg mL(-1); P < 0.001). Among patients with SSc, there were no differences in serum CCL13 levels between limited cutaneous SSc and diffuse cutaneous SSc. In a longitudinal study, CCL13 levels were generally unchanged during the follow-up. Conclusions Serum CCL13 was specifically increased in patients with SSc, but not in patients with SLE, DM or AD or in healthy controls. CCL13 could be a promising serological marker for SSc

    Recombinant human FGF-2 for the treatment of early-stage osteonecrosis of the femoral head: TRION, a single-arm, multicenter, Phase II trial

    Get PDF
    Aim: This study aimed to evaluate the 2-year outcomes from a clinical trial of recombinant human FGF-2 (rhFGF-2) for osteonecrosis of the femoral head (ONFH). Patients & methods: Sixty-four patients with nontraumatic, precollapse and large ONFHs were percutaneously administered with 800 μg rhFGF-2 contained in gelatin hydrogel. Setting the end point of radiological collapse, we analyzed the joint preservation period of the historical control. Changes in two validated clinical scores, bone regeneration and safety were evaluated. Results: Radiological joint preservation time was significantly higher in the rhFGF-2 group than in the control group. The ONFHs tended to improve to smaller ONFHs. The postoperative clinical scores significantly improved. Thirteen serious adverse events showed recovery. Conclusion: rhFGF-2 treatment increases joint preservation time with clinical efficacy, radiological bone regeneration and safety

    Time-Dependent Interaction between Differentiated Embryo Chondrocyte-2 and CCAAT/Enhancer-Binding Protein ␣ Underlies the Circadian Expression of CYP2D6 in Serum- Shocked HepG2 Cells

    Get PDF
    ABSTRACT Differentiated embryo chondrocyte-2 (DEC2), also known as bHLHE41 or Sharp1, is a pleiotropic transcription repressor that controls the expression of genes involved in cellular differentiation, hypoxia responses, apoptosis, and circadian rhythm regulation. Although a previous study demonstrated that DEC2 participates in the circadian control of hepatic metabolism by regulating the expression of cytochrome P450, the molecular mechanism is not fully understood. We reported previously that brief exposure of HepG2 cells to 50% serum resulted in 24-h oscillation in the expression of CYP3A4 as well as circadian clock genes. In this study, we found that the expression of CYP2D6, a major drug-metabolizing enzyme in humans, also exhibited a significant oscillation in serum-shocked HepG2 cells. DEC2 interacted with CCAAT/enhancer-binding protein (C/EBP␣), accompanied by formation of a complex with histone deacetylase-1, which suppressed the transcriptional activity of C/EBP␣ to induce the expression of CYP2D6. The oscillation in the protein levels of DEC2 in serum-shocked HepG2 cells was nearly antiphase to that in the mRNA levels of CYP2D6. Transfection of cells with small interfering RNA against DEC2 decreased the amplitude of CYP2D6 mRNA oscillation in serumshocked cells. These results suggest that DEC2 periodically represses the promoter activity of CYP2D6, resulting in its circadian expression in serum-shocked cells. DEC2 seems to constitute a molecular link through which output components from the circadian clock are associated with the time-dependent expression of hepatic drug-metabolizing enzyme
    corecore