408 research outputs found

    K+(K0)- Condensation in Highly Dense Matter with the Relativistic Mean-Field Theory

    Full text link
    Properties of dense hadronic matter including strange particles are studied within the relativistic mean-field theory (RMFT). The possibility of kaon condensation is reexamined, and a simple condition is found for the parameters included in RMFT.Comment: 12pages, Latex is used, 3 Postscript figures are available by request from [email protected]

    Topologically protected measurement-based quantum computation on the thermal state of a nearest-neighbor two-body Hamiltonian with spin-3/2 particles

    Full text link
    Recently, Li {\it et al.} [Phys. Rev. Lett. {\bf 107}, 060501 (2011)] have demonstrated that topologically protected measurement-based quantum computation can be implemented on the thermal state of a nearest-neighbor two-body Hamiltonian with spin-2 and spin-3/2 particles provided that the temperature is smaller than a critical value, namely, threshold temperature. Here we show that the thermal state of a nearest-neighbor two-body Hamiltonian, which consists of only spin-3/2 particles, allows us to perform topologically protected measurement-based quantum computation. The threshold temperature is calculated and turns out to be comparable to that with the spin-2 and spin-3/2 system. Furthermore, we generally show that a cluster state of high connectivity can be efficiently generated from the thermal state of the spin-3/2 system without severe thermal noise accumulation.Comment: 5 pages, 2 figures; v2 published versio

    Blind quantum computation protocol in which Alice only makes measurements

    Full text link
    Blind quantum computation is a new secure quantum computing protocol which enables Alice who does not have sufficient quantum technology to delegate her quantum computation to Bob who has a fully-fledged quantum computer in such a way that Bob cannot learn anything about Alice's input, output, and algorithm. In previous protocols, Alice needs to have a device which generates quantum states, such as single-photon states. Here we propose another type of blind computing protocol where Alice does only measurements, such as the polarization measurements with a threshold detector. In several experimental setups, such as optical systems, the measurement of a state is much easier than the generation of a single-qubit state. Therefore our protocols ease Alice's burden. Furthermore, the security of our protocol is based on the no-signaling principle, which is more fundamental than quantum physics. Finally, our protocols are device independent in the sense that Alice does not need to trust her measurement device in order to guarantee the security.Comment: 9 pages, 3 figure

    Power of Quantum Computation with Few Clean Qubits

    Get PDF
    This paper investigates the power of polynomial-time quantum computation in which only a very limited number of qubits are initially clean in the |0> state, and all the remaining qubits are initially in the totally mixed state. No initializations of qubits are allowed during the computation, nor intermediate measurements. The main results of this paper are unexpectedly strong error-reducible properties of such quantum computations. It is proved that any problem solvable by a polynomial-time quantum computation with one-sided bounded error that uses logarithmically many clean qubits can also be solvable with exponentially small one-sided error using just two clean qubits, and with polynomially small one-sided error using just one clean qubit. It is further proved in the case of two-sided bounded error that any problem solvable by such a computation with a constant gap between completeness and soundness using logarithmically many clean qubits can also be solvable with exponentially small two-sided error using just two clean qubits. If only one clean qubit is available, the problem is again still solvable with exponentially small error in one of the completeness and soundness and polynomially small error in the other. As an immediate consequence of the above result for the two-sided-error case, it follows that the TRACE ESTIMATION problem defined with fixed constant threshold parameters is complete for the classes of problems solvable by polynomial-time quantum computations with completeness 2/3 and soundness 1/3 using logarithmically many clean qubits and just one clean qubit. The techniques used for proving the error-reduction results may be of independent interest in themselves, and one of the technical tools can also be used to show the hardness of weak classical simulations of one-clean-qubit computations (i.e., DQC1 computations).Comment: 44 pages + cover page; the results in Section 8 are overlapping with the main results in arXiv:1409.677

    Can Reinforcement Learning Be Applied to Surgery?

    Get PDF
    Background: Remarkable progress has recently been made in the field of artificial intelligence (AI).Objective: We sought to investigate whether reinforcement learning could be used in surgery in the future.Methods: We created simple 2D tasks (Tasks 1–3) that mimicked surgery. We used a neural network library, Keras, for reinforcement learning. In Task 1, a Mac OS X with an 8 GB memory (MacBook Pro, Apple, USA) was used. In Tasks 2 and 3, a Ubuntu 14. 04LTS with a 26 GB memory (Google Compute Engine, Google, USA) was used.Results: In the task with a relatively small task area (Task 1), the simulated knife finally passed through all the target areas, and thus, the expected task was learned by AI. In contrast, in the task with a large task area (Task 2), a drastically increased amount of time was required, suggesting that learning was not achieved. Some improvement was observed when the CPU memory was expanded and inhibitory task areas were added (Task 3).Conclusions: We propose the combination of reinforcement learning and surgery. Application of reinforcement learning to surgery may become possible by setting rules, such as appropriate rewards and playable (operable) areas, in simulated tasks

    Effects of heat treatment on human hair keratin film

    Get PDF
    5ArticleJOURNAL OF JAPANESE COSMETIC SCIENCE SOCIETY. 37(3):165-170 (2013)journal articl
    corecore