11,399 research outputs found

    A New Algebraic Structure of Finite Quantum Systems and the Modified Bessel Functions

    Full text link
    In this paper we present a new algebraic structure (a super hyperbolic system in our terminology) for finite quantum systems, which is a generalization of the usual one in the two-level system. It fits into the so-called generalized Pauli matrices, so they play an important role in the theory. Some deep relation to the modified Bessel functions of integer order is pointed out. By taking a skillful limit finite quantum systems become quantum mechanics on the circle developed by Ohnuki and Kitakado.Comment: Latex ; 14 pages ; no figure ; minor changes. To appear in International Journal of Geometric Methods in Modern Physics, (Vo.4, No.7), 200

    Initial energy density and gluon distribution from the Glasma in heavy-ion collisions

    Full text link
    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of the heavy-ion collisions. We first decompose the energy density into the momentum components exactly in the McLerran-Venugopalan model, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement with inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.Comment: 14 pages, 8 figures, 3 table

    SSF loads and controllability during assembly

    Get PDF
    The Orbiter Primary Reaction Control System (PRCS) pulse width and firing frequency is restricted to prevent excessive loads in the Space Station Freedom (SSF). The feasibility of using the SSF Control Moment Gyros (CMG) as a secondary controller for load relief is evaluated. The studies revealed the CMG not only reduced loads but were useful for other SSF functions: vibration suppression and modal excitation. Vibration suppression lowers the g level for the SSF micro-g experiments and damps the low frequency oscillations that cause crew sickness. Modal excitation could be used for the modal identification experiment and health monitoring. The CMG's reduced the peak loads and damped the vibrations. They were found to be an effective multi-purpose ancillary device for SSF operation

    Low temperature specific heat of La_{3}Pd_{4}Ge_{4} with U_{3}Ni_{4}Si_{4}-type structure

    Full text link
    Low temperature specific heat has been investigated in a novel ternary superconductor La_{3}Pd_{4}Ge_{4} with an U_{3}Ni_{4}Si_{4}-type structure consisting of the alternating BaAl_{4} (ThCr_{2}Si_{2})- and AlB2_{2}-type layers. A comparative study with the related ThCr_{2}Si_{2}-type superconductor LaPd_{2}Ge_{2}, one of the layers in La_{3}Pd_{4}Ge_{4}, is also presented. From the normal state specific heat, the Sommerfeld coefficient γn=27.0\gamma_{n} = 27.0 mJ/mol K^2 and the Debye temperature ΘD\Theta_{\rm D} = 256 K are derived for the La_{3}Pd_{4}Ge_{4}, while those for the LaPd_{2}Ge_{2} are γn=8.26\gamma_{n} =8.26 mJ/mol K^2 and ΘD\Theta_{\rm D} = 291 K. The La_{3}Pd_{4}Ge_{4} has moderately high electronic density of state at the Fermi level. Electronic contribution on the specific heat, CelC_{\rm el}, in each compound is well described by the BCS behavior, suggesting that both of the La_{3}Pd_{4}Ge_{4} and the LaPd_{2}Ge_{2} have fully opened isotropic gap in the superconducting state

    Robust and Scalable Scheme to Generate Large-Scale Entanglement Webs

    Get PDF
    We propose a robust and scalable scheme to generate an NN-qubit WW state among separated quantum nodes (cavity-QED systems) by using linear optics and postselections. The present scheme inherits the robustness of the Barrett-Kok scheme [Phys. Rev. A {\bf 71}, 060310(R) (2005)]. The scalability is also ensured in the sense that an arbitrarily large NN-qubit WW state can be generated with a quasi-polynomial overhead 2O[(log2N)2]\sim 2^{O[(\log_2 N)^2]}. The process to breed the WW states, which we introduce to achieve the scalability, is quite simple and efficient, and can be applied for other physical systems.Comment: 5 pages, 3 figure

    Asymptotic form of two-point correlation function of the XXZ spin chain

    Full text link
    Correlation functions of the XXZ spin chain in the critical regime is studied at zero-temperature. They are exactly represented in the Fredholm determinant form and are related with an operator-valued Riemann-Hilbert problem. Analyzing this problem we prove that a two-point correlation function consisting of sufficiently separated spin operators is expressed by power-functions of the distance between those operators.Comment: 9 pages, LaTeX2e (+ amssymb, amsthm); Proof of Lemma 1 is revise

    Separability of a Low-Momentum Effective Nucleon-Nucleon Potential

    Get PDF
    A realistic nucleon-nucleon potential is transformed into a low-momentum effective one (LMNN) using the Okubo theory. The separable potentials are converted from the LMNN with a universal separable expansion method and a simple Legendre expansion. Through the calculation of the triton binding energies, the separability for the convergence of these ranks is evaluated. It is found that there is a tendency for the lower momentum cutoff parameter Λ\Lambda of LMNN to gain good separability.Comment: 6 pages, 1 tabl

    The Kondo crossover in shot noise of a single quantum dot with orbital degeneracy

    Full text link
    We investigate out of equilibrium transport through an orbital Kondo system realized in a single quantum dot, described by the multiorbital impurity Anderson model. Shot noise and current are calculated up to the third order in bias voltage in the particle-hole symmetric case, using the renormalized perturbation theory. The derived expressions are asymptotically exact at low energies. The resulting Fano factor of the backscattering current FbF_b is expressed in terms of the Wilson ratio RR and the orbital degeneracy NN as Fb=1+9(N1)(R1)21+5(N1)(R1)2F_b =\frac{1 + 9(N-1)(R-1)^2}{1 + 5(N-1)(R-1)^2} at zero temperature. Then, for small Coulomb repulsions UU, we calculate the Fano factor exactly up to terms of order U5U^5, and also carry out the numerical renormalization group calculation for intermediate UU in the case of two- and four-fold degeneracy (N=2,4N=2,\,4). As UU increases, the charge fluctuation in the dot is suppressed, and the Fano factor varies rapidly from the noninteracting value Fb=1F_b=1 to the value in the Kondo limit Fb=N+8N+4F_b=\frac{N+8}{N+4}, near the crossover region UπΓU\sim \pi \Gamma, with the energy scale of the hybridization Γ\Gamma.Comment: 10 pages, 4 figure

    Heavy flavor production in pA collisions

    Full text link
    Heavy quark production in high-energy proton-nucleus (pA) collisions is described in the framework of the Color Glass Condensate. kT factorization is broken even at leading order albeit a more general factorization in pA holds at this order in terms of 2, 3 and 4 point correlators of Wilson lines in the nuclear target. The x-evolution of these correlators is computed in the large A and large N mean field limit of the Balitsky-Kovchegov equation. We show results for heavy quark production at RHIC and LHC energies.Comment: Talk given at QM2006. 4
    corecore