16,223 research outputs found

    Evolution of Star Clusters near the Galactic Center: Fully Self-consistent N-body Simulations

    Full text link
    We have performed fully self-consistent NN-body simulations of star clusters near the Galactic center (GC). Such simulations have not been performed because it is difficult to perform fast and accurate simulations of such systems using conventional methods. We used the Bridge code, which integrates the parent galaxy using the tree algorithm and the star cluster using the fourth-order Hermite scheme with individual timestep. The interaction between the parent galaxy and the star cluster is calculate with the tree algorithm. Therefore, the Bridge code can handle both the orbital and internal evolutions of star clusters correctly at the same time. We investigated the evolution of star clusters using the Bridge code and compared the results with previous studies. We found that 1) the inspiral timescale of the star clusters is shorter than that obtained with "traditional" simulations, in which the orbital evolution of star clusters is calculated analytically using the dynamical friction formula and 2) the core collapse of the star cluster increases the core density and help the cluster survive. The initial conditions of star clusters is not so severe as previously suggested.Comment: 19 pages, 19 figures, accepted for publication in Ap

    Mathematical Structure of Rabi Oscillations in the Strong Coupling Regime

    Get PDF
    In this paper we generalize the Jaynes--Cummings Hamiltonian by making use of some operators based on Lie algebras su(1,1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (quant--ph/0202081) under the rotating--wave approximation. In the first half we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1,1) and su(2). In the latter half we carry out a detailed examination of Frasca (quant--ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in Quantum Computation. Lastly we make a brief comment on application to Holonomic Quantum Computation.Comment: Latex file, 24 pages. I added a new section (Quantum Computation), so this paper became self-contained in a certain sens

    Scalar Glueball--Quarkonium Mixing and the Structure of the QCD Vacuum

    Get PDF
    We use Ward identities of broken scale invariance to infer the amount of scalar glueball--qˉq\bar{q}q meson mixing from the ratio of quark and gluon condensates in the QCD vacuum. Assuming dominance by a single scalar state, as suggested by a phase-shift analysis, we find a mixing angle γ36\gamma \sim 36^{\circ}, corresponding to near-maximal mixing of the glueball and sˉs\bar{s}s components.Comment: 7 pages, LaTe

    BRIDGE: A Direct-tree Hybrid N-body Algorithm for Fully Self-consistent Simulations of Star Clusters and their Parent Galaxies

    Full text link
    We developed a new direct-tree hybrid N-body algorithm for fully self-consistent N-body simulations of star clusters in their parent galaxies. In such simulations, star clusters need high accuracy, while galaxies need a fast scheme because of the large number of the particles required to model it. In our new algorithm, the internal motion of the star cluster is calculated accurately using the direct Hermite scheme with individual timesteps and all other motions are calculated using the tree code with second-order leapfrog integrator. The direct and tree schemes are combined using an extension of the mixed variable symplectic (MVS) scheme. Thus, the Hamiltonian corresponding to everything other than the internal motion of the star cluster is integrated with the leapfrog, which is symplectic. Using this algorithm, we performed fully self-consistent N-body simulations of star clusters in their parent galaxy. The internal and orbital evolutions of the star cluster agreed well with those obtained using the direct scheme. We also performed fully self-consistent N-body simulation for large-N models (N=2×106N=2\times 10^6). In this case, the calculation speed was seven times faster than what would be if the direct scheme was used.Comment: 12 pages, 13 figures, Accepted for PAS

    The unitary-model-operator approach to nuclear many-body problems

    Get PDF
    Microscopic nuclear structure calculations have been performed within the framework of the unitary-model-operator approach. Ground-state and single-particle energies are calculated for nuclei around ^{14}C, ^{16}O and ^{40}Ca with modern nucleon-nucleon interactions.Comment: 6 pages, 4 figures, Talk presented at the International Symposium on Correlation Dynamics in Nuclei (CDN05), Jan. 1 - Feb. 4, 2005, Tokyo, Japa

    Remarks on the Collective Quantization of the SU(2) Skyrme Model

    Full text link
    We point out the question of ordering momentum operator in the canonical \break quantization of the SU(2) Skyrme Model. Thus, we suggest a new definition for the momentum operator that may solve the infrared problem that appears when we try to minimize the Quantum Hamiltonian.Comment: 8 pages, plain tex, IF/UFRJ/9

    The unitary-model-operator approach to nuclear many-body problems

    Get PDF
    Microscopic nuclear structure calculations have been performed within the framework of the unitary-model-operator approach. Ground-state and single-particle energies are calculated for nuclei around ^{14}C, ^{16}O and ^{40}Ca with modern nucleon-nucleon interactions.Comment: 6 pages, 4 figures, Talk presented at the International Symposium on Correlation Dynamics in Nuclei (CDN05), Jan. 1 - Feb. 4, 2005, Tokyo, Japa

    The unitary-model-operator approach to nuclear many-body problems

    Get PDF
    Microscopic nuclear structure calculations have been performed within the framework of the unitary-model-operator approach. Ground-state and single-particle energies are calculated for nuclei around ^{14}C, ^{16}O and ^{40}Ca with modern nucleon-nucleon interactions.Comment: 6 pages, 4 figures, Talk presented at the International Symposium on Correlation Dynamics in Nuclei (CDN05), Jan. 1 - Feb. 4, 2005, Tokyo, Japa
    corecore