185 research outputs found

    Oil-in-water emulsion lotion providing controlled release using 2-methacryloyloxyethyl phosphorylcholine n-butyl methacrylate copolymer as emulsifier

    Get PDF
    AbstractLotion is a useful vehicle for active ingredients used to treat skin disease because it can be applied to the scalp, can cover large areas of skin, and it is easy to spread due to low viscosity. An emulsion lotion (EL) containing 2-methacryloyloxyethyl phosphorylcholine n-butyl methacrylate copolymer (PMB) as an emulsifier that provides controlled-release was developed. Diphenhydramine (DPH) was used as a model drug. Formulation with 5% DPH, 5% soybean oil, and 4% PMB in water was emulsified using a high-pressure homogenizer. Polysorbate 80 (TO) was used instead of PMB for comparison. They were applied in vitro to Yucatan micropig intact or stripped skin at a practical dose (2μL/cm2). For stripped skin, penetration of DPH from 4% PMB EL was slower than that from 1% TO EL; results for intact skin were similar. The same phenomenon was observed with application to rabbit skin in vivo. When 4% PMB EL dried on the skin, it made a thin film matrix incorporating the oil phase, which controlled the release of DPH. The release rate could be controlled by the ratio of oil phase to PMB. The EL with PMB shows promise as a vehicle for long-acting treatment of skin diseases

    子宮筋層の内外層に発生する子宮腺筋症おける、それぞれの組織学的特徴

    Get PDF
    OBJECTIVE: To estimate the phenotypic characterization of fibrotic process in adenomyosis occurring at the inner or the outer myometrium. METHODS: Eight cases of adenomyosis occurring at the inner myometrium (Subtype I) and 10 cases of adenomyosis occurring at the outer myometrium (Subtype II), and 10 normal counterparts were used in this study. A immunohistochemical study for smooth muscle cells (SMCs) was performed using cytoskeletal proteins, Type I and III collagen, TGF-β and its signaling molecules. RESULTS: An increased expression of Type I collagen was observed in the extracellular matrix of adenomyotic foci. In normal uteri, immunostaining of SMC differentiation marker proteins (Desmin, Smoothelin, Myosin heavy chain (MHC)) were absent or only found in low numbers at the inner myometrium, while all of these marker proteins were clearly stained at the outer myometrium. In both types of adenomyotic foci, Desmin, Smoothelin, and MHC commonly showed a negative staining at the adjacent area to the glands. A significant staining of Non-muscle myosin IIB, TGF-β, and phosphorylated TGF-β type I receptors were found only at the SMCs of Subtype II adenomyosis. The Smad3/2 ratio of Subtype II adenomyosis was significantly higher than that of Subtype I. CONCLUSIONS: The inner myometrium of normal uteri was composed of undifferentiated phenotypes of SMCs, while the outer myometrium was composed of terminally differentiated SMCs. Various fibrotic processes have been suggested in the development of uterine adenomyosis. Distinct expression patterns of fibrosis related proteins have been shown to be implicated with differences in the subtypes of adenomyosis.博士(医学)・甲第681号・平成30年3月15日Copyright: © 2017 Kishi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    浸潤および血管新生を通しての人肝細胞癌の進行におけるケラチン19分子の役割

    Get PDF
    BACKGROUND: Keratin (K) 19-positive hepatocellular carcinoma (HCC) is well known to have a higher malignant potential than K19-negative HCC: However, the molecular mechanisms involved in K19-mediated progression of HCC remain unclear. We attempted to clarify whether K19 directly affects cell survival and invasiveness in association with cellular senescence or epithelial-mesenchymal transition (EMT) in K19-positive HCC. METHODS: K19 expression was analysed in 136 HCC surgical specimens. The relationship of K19 with clinicopathological factors and survival was analysed. Further, the effect of K19 on cell proliferation, invasion, and angiogenesis was examined by silencing K19 in the human HCC cell lines, HepG2, HuH-7, and PLC/PRF/5. Finally, we investigated HCC invasion, proliferation, and angiogenesis using K19-positive HCC specimens. RESULTS: Analysis of HCC surgical specimens revealed that K19-positive HCC exhibited higher invasiveness, metastatic potential, and poorer prognosis. In vitro experiments using the human HCC cell lines revealed that K19 silencing suppressed cell growth by inducting apoptosis or upregulating p16 and p27, resulting in cellular senescence. In addition, transfection with K19 siRNA upregulated E-cadherin gene expression, significantly inhibited the invasive capacity of the cells, downregulated angiogenesis-related molecules such as vasohibin-1 (VASH1) and fibroblast growth factor 1 (FGFR1), and upregulated vasohibin-2 (VASH2). K19-positive HCC specimens exhibited a high MIB-1 labelling index, decreased E-cadherin expression, and high microvessel density around cancer foci. CONCLUSION: K19 directly promotes cancer cell survival, invasion, and angiogenesis, resulting in HCC progression and poor clinical outcome. K19 may therefore be a novel drug target for the treatment of K19-positive HCC.博士(医学)・乙第1399号・平成29年3月15日© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    液状化細胞診材料を用いた遺伝子解析による腫瘍特異的遺伝子検出感度の検討

    Get PDF
    Liquid-based cytology (LBC) analysis of sputum is a useful diagnostic and prognostic tool for detecting lung cancer. DNA and RNA derived from lung cancer cells can be used for this diagnosis. However, the quality of cytological material is not always adequate for molecular analysis due to the effect of formalin in the commercially available fixation kits. In this study, we examined DNA and RNA extraction methods for LBC analysis with formalin fixation, using lung carcinoma cell lines and sputum. The human non-small cell lung cancer cell lines were fixed with LBC fixation reagents, such as CytoRich red preservative. Quantification of thyroid transcription factor-1 (TTF-1) and actin mRNA, epidermal growth factor receptor (EGFR) DNA in HCC827, H1975, and H1299 cells, and mutation analysis of EGFR in HCC827 and H1975 cells were performed by quantitative PCR (qPCR) and fluorescence resonance energy transfer (FRET)-based preferential homoduplex formation assay (F-PHFA) method, respectively. mRNA and DNA extracted from cell lines using RNA and/or DNA extraction kits for formalin-fixed paraffin-embedded (FFPE) fixed with various LBC solutions were efficiently detected by qPCR. The detection limit of EGFR mutations was at a rate of 5% mutated positive cells in LBC. The detection limit of the EGFR exon 19 deletion in HCC827 was detected in more than 1.5% of the positive cells in sputum. In contrast, the detection limit of the T790M/L858R mutation in H1975 was detected in more than 13% of the positive cells. We also detected EGFR mutations using next generation sequencing (NGS). The detection limit of NGS for EGFR mutation was lower than that of the F-PHFA method. Furthermore, more than 0.1% of positive cells could be cytomorphologically detected. Our results demonstrate that LBC systems are powerful tools for cytopathological and genetic analyses. However, careful attention should be paid to the incidence of false negative results in the genetic analysis of EGFR mutations detected by LBC.博士(医学)・甲第750号・令和2年6月30日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    筋層浸潤性膀胱癌における壁浸潤長は予後予測因子であり、血清cell-free DNAと関連する

    Get PDF
    Background: We investigated the potential of the depth of invasion (DOI) as a prognostic factor in patients with muscle-invasive bladder cancer (MIBC) who underwent radical cystectomy (RC). Moreover, we examined the association between the preoperative levels of circulating cell-free DNA and DOI.博士(医学)・甲第876号・令和5年3月15

    乳癌術前化学療法において腋窩リンパ節転移が陰性化するための効果予測因子の検討

    Get PDF
    Purpose: We investigated the role of tumor-infiltrating lymphocytes (TILs) in pretreatment primary breast cancer to predict pathological response to neoadjuvant chemotherapy (NAC) in patients with clinical node-positive disease (cN +). Methods: The subjects of this study were 60 patients with cN + , who received NAC followed by breast surgery with axillary lymph node dissection (ALND). We conducted a semi-quantitative assessment of TILs in pretreatment primary tumors and their association with clinicopathological factors and axillary lymph node metastasis. Results: We observed a higher number of TILs in tumors with negative hormone receptors, positive human epidermal growth factor receptor 2, or high Ki67. TILs were associated with a favorable response to NAC in primary tumors. The rate of axillary pathologic complete response (Ax-pCR) was significantly higher in patients with a high number of TILs than in patients with a low number of TILs (72.0% versus 17.1%, p < 0.001). In multivariable analysis, a high number of TILs was a significant predictor of Ax-pCR as well as of pCR of the primary tumor after NAC. Importantly, all patients with HER2-positive tumors in the high TILs group showed Ax-pCR on ALND. Conclusion: TILs in pretreatment primary breast cancer had the potential to predict therapeutic efficacy of NAC in patients with clinical node-positive disease.博士(医学)・乙第1498号・令和3年3月15日© Springer Nature Singapore Pte Ltd. 2020This is a post-peer-review, pre-copyedit version of an article published in Surgery today. The final authenticated version is available online at: https://doi.org/10.1007/s00595-020-02157-6

    Porphyromonas gingivalis Outer Membrane Vesicles Stimulate Gingival Epithelial Cells to Induce Pro-Inflammatory Cytokines via the MAPK and STING Pathways

    Get PDF
    Porphyromonas gingivalis (Pg) is a keystone pathogen associated with chronic periodontitis and produces outer membrane vesicles (OMVs) that contain lipopolysaccharide (LPS), gingipains, and pathogen-derived DNA and RNA. Pg-OMVs are involved in the pathogenesis of periodontitis. Pg-OMV-activated pathways that induce the production of the pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in the human gingival epithelial cell line, OBA-9, were investigated. The role of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in levels of Pg-OMV-induced pro-inflammatory cytokines was investigated using Western blot analysis and specific pathway inhibitors. Pg-OMVs induced IL-6 and IL-8 production via the extracellular signal-regulated kinase (Erk) 1/2, c-Jun N-terminal kinase (JNK), p38 MAPK, and NF-κB signaling pathways in OBA-9 cells. In addition, the stimulator of interferon genes (STING), an essential innate immune signaling molecule, was triggered by a cytosolic pathogen DNA. Pg-OMV-induced IL-6 and IL-8 mRNA expression and production were significantly suppressed by STING-specific small interfering RNA. Taken together, these results demonstrated that Pg-OMV-activated Erk1/2, JNK, p38 MAPK, STING, and NF-κB signaling pathways resulting in increased IL-6 and IL-8 expression in human gingival epithelial cells. These results suggest that Pg-OMVs may play important roles in periodontitis exacerbation by stimulating various pathways

    膀胱癌細胞株において、ヘパラナーゼを阻害することにより、細胞浸潤、遊走、接着能を抑制する

    Get PDF
    Heparan sulfate proteoglycan syndecan-1, CD138, is known to be associated with cell proliferation, adhesion, and migration in malignancies. We previously reported that syndecan-1 (CD138) may contribute to urothelial carcinoma cell survival and progression. We investigated the role of heparanase, an enzyme activated by syndecan-1 in human urothelial carcinoma. Using human urothelial cancer cell lines, MGH-U3 and T24, heparanase expression was reduced with siRNA and RK-682, a heparanase inhibitor, to examine changes in cell proliferation activity, induction of apoptosis, invasion ability of cells, and its relationship to autophagy. A bladder cancer development mouse model was treated with RK-682 and the bladder tissues were examined using immunohistochemical analysis for Ki-67, E-cadherin, LC3, and CD31 expressions. Heparanase inhibition suppressed cellular growth by approximately 40% and induced apoptosis. The heparanase inhibitor decreased cell activity in a concentration-dependent manner and suppressed invasion ability by 40%. Inhibition of heparanase was found to suppress autophagy. In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer mice, treatment with heparanase inhibitor suppressed the progression of cancer by 40%, compared to controls. Immunohistochemistry analysis showed that heparanase inhibitor suppressed cell growth, and autophagy. In conclusion, heparanase suppresses apoptosis and promotes invasion and autophagy in urothelial cancer.博士(医学)・乙第1506号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    microRNA-345の過剰発現は、MUC1およびTJP2の発現を抑制することにより、膵管腺癌細胞株の浸潤能に影響を及ぼす

    Get PDF
    The majority of pancreatic carcinomas are pancreatic ductal adenocarcinomas (PDAC), and the presence of non-invasive pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasm, as an associated lesion, is considered important. These microscopic hyperplastic or grossly papillomatous lesions exhibit varying degrees of morphological atypia and may develop into invasive carcinomas. In this study, we investigated whether mucin-1 (MUC1) is involved in the progression of pancreatic carcinoma and examined the mechanisms by which microRNAs regulate MUC1 expression in vitro. In PDAC cell lines, suppression of MUC1 expression reduced cell proliferation and invasion; PDAC cell lines transfected with an miR-345 precursor suppressed the expression of MUC1, and reduced cell proliferation and invasion. Tight junction protein 2 (TJP2), a putative target of miR-345, is regulated by MUC1. The suppression of TJP2 expression reduced cell proliferation by inducing apoptosis. These results suggest that MUC1 and TJP2, the putative target molecules of miR-345, are critical in maintaining the invasive potential of pancreatic carcinoma cells, and regulating their expression may prevent the progression of non-invasive pancreatic intraductal lesions to invasive carcinomas. This study provides new insights for the development of novel molecular targeted therapies for pancreatic carcinomas.博士(医学)・甲第866号・令和5年3月15

    内視鏡超音波ガイド下穿刺吸引の液状検体の残余を用いたK-ras 遺伝子検査は正診率を高める

    Get PDF
    Background: Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) technology is widely used for the diagnosis of pancreatic masses. However, in some cases, inadequate tissue volume or difficulty of morphological diagnosis are constraining factors for adequate cytopathological evaluation. K-ras mutation is the most frequently acquired genetic abnormality, occurring in approximately 90% of all patients with pancreatic ductal adenocarcinoma (PDAC). In the present study, the clinical utility of residual liquid-based cytology (LBC) specimens obtained using EUS-FNA for K-ras mutation analysis was evaluated. Methods: In this study, 81 patients with pancreatic lesions were examined. The cell block (CB) specimens separated from EUS-FNA samples were morphologically evaluated by hematoxylin-eosin (HE) staining. Final diagnoses were confirmed by CB specimens, surgical resection specimens, diagnostic imaging, and clinical follow-up. Genomic DNA of residual LBC specimens stored at 4°C for several months were extracted and assessed for K-ras mutations using a fluorescence resonance energy transfer-based preferential homoduplex formation assay. Results: K-ras mutation analysis using residual LBC samples was successful in all cases. The sensitivity, specificity, and accuracy of CB examination alone were 77.4%, 100%, and 81.3%, respectively, and those of the combination of CB examination and K-ras mutation analysis were 90.3%, 92.3%, and 90.7%, respectively. Furthermore, K-ras mutations were detected in 8 (57.1%) of 14 PDAC samples for which the CB results were inconclusive. Conclusion: These findings suggest that K-ras mutation analysis using residual LBC specimens improves the diagnostic accuracy of EUS-FNA.博士(医学)・乙第1492号・令和2年12月24日Copyright: © 2018 Sekita-Hatakeyama et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore