1 research outputs found
Using spin to understand the formation of LIGO's black holes
With the detection of four candidate binary black hole (BBH) mergers by the
Advanced LIGO detectors thus far, it is becoming possible to constrain the
properties of the BBH merger population in order to better understand the
formation of these systems. Black hole (BH) spin orientations are one of the
cleanest discriminators of formation history, with BHs in dynamically formed
binaries in dense stellar environments expected to have spins distributed
isotropically, in contrast to isolated populations where stellar evolution is
expected to induce BH spins preferentially aligned with the orbital angular
momentum. In this work we propose a simple, model-agnostic approach to
characterizing the spin properties of LIGO's BBH population. Using measurements
of the effective spin of the binaries, which is LIGO's best constrained spin
parameter, we introduce a simple parameter to quantify the fraction of the
population that is isotropically distributed, regardless of the spin magnitude
distribution of the population. Once the orientation characteristics of the
population have been determined, we show how measurements of effective spin can
be used to directly constrain the underlying BH spin magnitude distribution.
Although we find that the majority of the current effective spin measurements
are too small to be informative, with LIGO's four BBH candidates we find a
slight preference for an underlying population with aligned spins over one with
isotropic spins (with an odds ratio of 1.1). We argue that it will be possible
to distinguish symmetric and anti-symmetric populations at high confidence with
tens of additional detections, although mixed populations may take
significantly more detections to disentangle. We also derive preliminary spin
magnitude distributions for LIGO's black holes, under the assumption of aligned
or isotropic populations