32 research outputs found

    Penaeid shrimp genome provides insights into benthic adaptation and frequent molting

    Get PDF
    Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering similar to 1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture

    Effect of molecular structure of aniline–formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution

    No full text
    Aniline–formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L?1 hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline–formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution

    Design and Fabrication of a Novel Poly-Si Microhotplate with Heat Compensation Structure

    No full text
    I Microhotplates are critical devices in various MEMS sensors that could provide appropriate operating temperatures. In this paper, a novel design of poly-Si membrane microhotplates with a heat compensation structure was reported. The main objective of this work was to design and fabricate the poly-Si microhotplate, and the thermal and electrical performance of the microhotplates were also investigated. The poly-Si resistive heater was deposited by LPCVD, and phosphorous doping was applied by in situ doping process to reduce the resistance of poly-Si. In order to obtain a uniform temperature distribution, a series of S-shaped compensation structures were fabricated at the edge of the resistive heater. LPCVD SiNx layers deposited on both sides of poly-Si were used as both the mechanical supporting layer and the electrical isolation layer. The Pt electrode was fabricated on the top of the microhotplate for temperature detection. The area of the heating membrane was 1 mm × 1 mm. Various parameters of the different size devices were simulated and measured, including temperature distribution, power consumption, thermal expansion and response time. The simulation and electrical–thermal measurement results were reported. For microhotplates with a heat compensation structure, the membrane temperature reached 811.7 °C when the applied voltage was 5.5 V at a heating power of 148.3 mW. A 3.8 V DC voltage was applied to measure the temperature distribution; the maximum temperature was 397.6 °C, and the area where the temperature reached 90% covered about 73.8% when the applied voltage was 3.8 V at a heating power of 70.8 mW. The heating response time was 17 ms while the microhotplate was heated to 400 °C from room temperature, and the cooling response time was 32 ms while the device was recovered to room temperature. This microhotplate has many advantages, such as uniform temperature distribution, low power consumption and fast response, which are suitable for MEMS gas sensors, humidity sensors, gas flow sensors, etc

    Selection of Therapeutic Drugs for COVID-19 Infection in Adults with Chronic Kidney Disease Based on Medical Evidence

    Get PDF
    Chronic kidney disease (CKD) is characterized by abnormal urine test or progressive kidney function decline. Patients with CKD are at a higher risk of COVID-19 infection with higher conversion and mortality rates after infection for their reduced kidney function, long-term use of immunosuppressive agents or combination of underlying diseases. Therefore, rational drug use is particularly important for CKD patients combined with COVID-19 infection. This article summarizes special considerations for the use of relevant medications in patients with CKD by integrating the current evidence of medications for the treatment of COVID-19 infection, including antiviral drugs, anti-inflammatory drugs, antithrombotic drugs, convalescent plasma and neutralizing monoclonal antibodies, as well as commonly used symptomatic drugs of respiratory system (such as antfebrile, antisputum and cough medicine and anti-allergic drugs), high lighting the modified medication regiments according to kidney function levels, in order to provide a reference for clinical professionals, assist in clinical decision-making and rational drug use, and ensure clinical efficacy and safety

    Effects of Mask Material on Lateral Undercut of Silicon Dry Etching

    No full text
    The silicon etching process is a core component of production in the semiconductor industry. Undercut is a nonideal effect in silicon dry etching. A reduced undercut is desired when preparing structures that demand a good sidewall morphology, while an enlarged undercut is conducive to the fabrication of microstructure tips. Undercut is related to not only the production parameters but also the mask materials. In this study, five mask materials—Cr, Al, ITO, SiNx, and SiO2—are chosen to compare the undercut effect caused by the isotropic etching process and the Bosch process. In the Bosch process, the SiNx mask causes the largest undercut, and the SiO2 mask causes the smallest undercut. In the isotropic process, the results are reversed. The effect of charges in the mask layer is found to produce this result, and the effect of electrons accumulating during the process is found to be negligible. The undercut effect can be enhanced or suppressed by selecting appropriate mask materials, which is helpful in the MEMS process. Finally, using an Al mask, a tapered silicon tip with a top diameter of 119.3 nm is fabricated using the isotropic etching process
    corecore