368 research outputs found

    Non-monotonic dependence of the rupture force in polymer chains on their lengths

    Full text link
    We consider the rupture dynamics of a homopolymer chain pulled at one end at a constant loading rate. Our model of the breakable polymer is related to the Rouse chain, with the only difference that the interaction between the monomers is described by the Morse potential instead of the harmonic one, and thus allows for mechanical failure. We show that in the experimentally relevant domain of parameters the dependence of the most probable rupture force on the chain length may be non-monotonic, so that the medium-length chains break easier than the short and the long ones. The qualitative theory of the effect is presented

    Thermally activated breakdown in a simple polymer model

    Full text link
    We consider the thermally activated fragmentation of a homopolymer chain. In our simple model the dynamics of the intact chain is a Rouse one until a bond breaks and bond breakdown is considered as a first passage problem over a barrier to an absorbing boundary. Using the framework of the Wilemski-Fixman approximation we calculate activation times of individual bonds for free and grafted chains. We show that these times crucially depend on the length of the chain and the location of the bond yielding a minimum at the free chain ends. Theoretical findings are qualitatively confirmed by Brownian dynamics simulations

    Galaxy-Quasar correlations between APM galaxies and Hamburg-ESO QSOs

    Full text link
    We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshift using multiple cross-correlation estimators. Each of the estimators yield very similar results, implying that the APM catalogue and the Hamburg-ESO survey are both fair samples of the respective true galaxy and QSO populations. Though the signal matches the expectations of gravitational lensing qualitatively, the strength of the measured cross-correlation signal is significantly greater than the CDM models of lensing by large scale structure would suggest. This same disagreement between models and observation has been found in several earlier studies. We estimate our confidence in the correlation detections versus redshift by generating 1000 random realizations of the Hamburg-ESO QSO survey: We detect physical associations between galaxies and low-redshift QSOs at 99% confidence and detect lensing associations at roughly 95% confidence for QSOs with redshifts between 0.6 and 1. Control cross-correlations between Galactic stars and QSOs show no signal. Finally, the overdensities (underdensities) of galaxies near QSO positions relative to those lying roughly 135 - 150 arcmin away are uncorrelated with differences in Galactic extinction between the two regions, implying that Galactic dust is not significantly affecting the QSO sample.Comment: 35 pages total, including 9 figures. Accepted by the Astrophysical Journa

    Self-organized escape of oscillator chains in nonlinear potentials

    Full text link
    We present the noise free escape of a chain of linearly interacting units from a metastable state over a cubic on-site potential barrier. The underlying dynamics is conservative and purely deterministic. The mutual interplay between nonlinearity and harmonic interactions causes an initially uniform lattice state to become unstable, leading to an energy redistribution with strong localization. As a result a spontaneously emerging localized mode grows into a critical nucleus. By surpassing this transition state, the nonlinear chain manages a self-organized, deterministic barrier crossing. Most strikingly, these noise-free, collective nonlinear escape events proceed generally by far faster than transitions assisted by thermal noise when the ratio between the average energy supplied per unit in the chain and the potential barrier energy assumes small values

    Internal friction and mode relaxation in a simple chain model

    Full text link
    We consider equilibrium relaxation properties of the end-to-end distance and of principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling

    High redshift AGNs from the 1Jy catalogue and the magnification bias

    Full text link
    We have found a statistically significant (99.1 \%) excess of red (O−E>2O-E>2) galaxies with photographic magnitudes E<19.5E<19.5, O<21O< 21 taken from the APM Sky Catalogue around z∌1z \sim 1 radiosources from the 1Jy catalogue. The amplitude, scale and dependence on galaxy colours of the observed overdensity are consistent with its being a result of the magnification bias caused by the weak gravitational lensing of large scale structures at redshift z≈0.2−0.4z \approx 0.2-0.4 and are hardly explained by other causes, as obscuration by dust.Comment: uuencoded file containing 3 ps files: the main text, a table and a figure. To appear in ApJ Letter

    Large-Scale QSO-Galaxy Correlations and Weak Lensing

    Full text link
    Several recent studies show that bright, intermediate and high redshift optically and radio selected QSOs are positively correlated with nearby galaxies on a range of angular scales up to a degree. Obscuration by unevenly distributed Galactic dust can be ruled out as the cause, leaving weak statistical lensing as the physical process responsible. However the amplitude of correlations on < 1 degree scales is at least a factor of a few larger than lensing model predictions. A possible way to reconcile the observations and theory is to revise the weak lensing formalism. We extend the standard lensing formulation to include the next higher order term (second order) in the geodesic equation of motion for photons. We derive relevant equations applicable in the weak lensing regime, and discuss qualitative properties of the updated formulation. We then perform numerical integrations of the revised equation and study the effect of the extra term using two different types of cosmic mass density fluctuations. We find that nearby large-scale coherent structures increase the amplitude of the predicted lensing-induced correlations between QSOs and foreground galaxies by ~ 10% (not a factor of several required by observations), while the redshift of the optimal, i.e. `most correlated' structures is moved closer to the observer compared to what is predicted using the standard lensing equation.Comment: extended Section 2; 20 pages, including 4 figures, accepted to Ap

    An amplicon sequencing protocol for attacker identification from DNA traces left on artificial prey

    Get PDF
    1. Clay model studies are a popular tool to identify predator–prey interactions that are challenging to observe directly in the field. But despite its wide use, the meth-od's applicability is limited by its low taxonomic resolution. Attack marks on clay models are usually identified visually, which only allows classification into higher taxonomic levels of predators. Thus, the method is often biased, lacks proof and, above all, standardization.2. Here, we tested whether precise identification of attackers can be provided by amplification and sequencing of mitochondrial DNA left in bite marks on clay models. We validated our approach in a controlled laboratory study as well as in a field experiment using clay models of a common European amphibian, the European fire salamander Salamandra salamandra. DNA-based taxonomic assign-ments were additionally compared to visual assessments of bite marks.3. We show that trace DNA of attackers can be routinely isolated and sequenced from bite marks, providing accurate species-level classification. In contrast, visual identification alone yielded a high number of unassigned predator taxa. We also highlight the sensitivity of the method and show likely sources of contamination as well as probable cases of secondary and indirect predation.4. Our standardized approach for species-level attacker identification opens up new possibilities far beyond the standard use of clay models to date, including food web studies at unprecedented detail, invasive species monitoring as well as biodi-versity inventories

    Correlation between galaxies and QSO in the SDSS:na signal from gravitational lensing magnification?

    Full text link
    We report a detection of galaxy-QSO cross-correlation w_GQ in the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR) over 0.2-30 arc-minute scales. We cross-correlate galaxy samples of different mean depths r'=19-22 (z_G =0.15-0.35) with the main QSO population (i'<19.1) at mean z_Q=1.6. We find significant positive correlation in all cases except for the faintest QSOs, as expected if the signal were due to weak lensing magnification. The amplitude of the signal on arc-minute scales is about 20%. This is a few times larger than currently expected from weak lensing in LCDM but confirms, at a higher significance, previous measurements by several groups. When compared to the galaxy-galaxy correlation w_GG, a weak lensing interpretation indicates a strong and steep non-linear amplitude for the underlaying matter fluctuations: sigma=400 on scales of 0.2 Mpc/h, in contradiction with non-linear modeling of LCDM fluctuations. We also detect a normalized skewness (galaxy-galaxy-QSO correlation) of S_3=21 +/-6 at z=0.15 (S_3= 14 +/- 4 at z=0.35), which several sigma low, as compared to LCDM expectations. These observational trends can be reconciled with lensing in a flat Lambda universe with sigma_8=1, provided the linear spectrum is steeper (n = 1) than in the LCDM model on these small (cluster) scales. Under this interpretation, the galaxy distribution traces the matter variance with an amplitude that is 100 times smaller: ie galaxies are anti-bias with b=0.1 on small scales, increasing to b=1 at 10 Mpc/h.Comment: Final version accepted in ApJ. Minor changes and ref
    • 

    corecore