23 research outputs found

    A RT-qPCR system using a degenerate probe for specific identification and differentiation of SARS-CoV-2 Omicron (B.1.1.529) variants of concern

    Get PDF
    Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.</p

    Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023

    Get PDF
    Funding Information: We would like to thank Karina Kaae, Lanni Fugl Niebuhr Nielsen and Joan Nevermann Jensen for their laboratory expertise, and acknowledge the great effort by clinicians and laboratory technicians at hospitals across Denmark and at Landspítali, Reykjavik, in securing samples and data essential for WGS-based surveillance efforts, as well as the dedicated technical staff maintaining and developing the registries and epidemiological databases at the core of national surveillance in Denmark. Publisher Copyright: © 2023 European Centre for Disease Prevention and Control (ECDC). All rights reserved.A highly virulent sub-lineage of the Streptococcus pyogenes M1 clone has been rapidly expanding throughout Denmark since late 2022 and now accounts for 30% of the new invasive group A streptococcal infections. We aimed to investigate whether a shift in variant composition can account for the high incidence rates observed over winter 2022/23, or if these are better explained by the impact of COVID-19-related restrictions on population immunity and carriage of group A Streptococcus. An increase in incidence rates of invasive (iGAS) and non-invasive (nGAS) group A Streptococcus infection has been reported by several countries across Europe during the 2022/23 winter season [1-3]. Through analysis of all whole genome sequencing (WGS) data acquired for national surveillance of iGAS in Denmark since 2018, we aimed to investigate current genomic developments and the impact of emerging lineages on iGAS incidence rates in 2023. In Denmark, iGAS is not notifiable except in case of meningitis, however, test results from all 10 Departments of Clinical Microbiology (DCMs) are submitted to the Danish Microbiology Database (MiBa) [4] and can be used to monitor incidence rates. Iceland also experienced a higher iGAS incidence in early 2023, and we also present Icelandic WGS data on iGAS isolates from 2022 and 2023.Peer reviewe

    Clostridium hastiforme bacteraemia secondary to pyometra in a 64-year-old woman

    No full text
    The Gram-negative, rod-shaped, anaerobe bacteria Tissierella praeacuta was first described in 1908 by Tissier. However, during the past decade, Clostridium hastiforme has been recognised as a later synonym of T. praeacuta. C. hastiforme/T. praeacuta has only rarely been described in previous literature as a cause of human infection. We present here a case report of C. hastiforme/T. praeacuta bacteraemia secondary to pyometra in a 64-year-old woman with a history of multiple sclerosis and an intrauterine device inserted three decades earlier. C. hastiforme/T. praeacuta was isolated from blood as well as pus from the site of infection. The patient was cured with a combination of drainage and antibiotic therapy
    corecore