26 research outputs found

    Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

    Get PDF
    Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols

    A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using Pseudomonas putida 4-ethylphenol methylene hydroxylase (4-EPMH)

    Get PDF
    Brettanomyces/Dekkera bruxellensis is a cause of major concern for the winemaking industry worldwide. If a slight presence of this spoilage yeast in red wine adds a Brett character, a strong contamination has irreversible and detrimental effects on the organoleptic qualities due to the production of volatile phenols such as 4-ethylphenol. Time is a key factor in the treatment of B. bruxellensis contaminations. Nowadays, the diagnostic and quantification resources available are time consuming and too expensive, making them either inadequate or inaccessible to most of the winemakers. This study was focused on a new, easy to use, inexpensive method that could allow winemakers to directly detect B. bruxellensis contamination in red wine at an early stage, hence, reducing wine spoilage. In this work, the ability of Pseudomonas putida 4-ethylphenol methylene hydroxylase was tested in order to catabolize the 4-ethylphenol and to elaborate an enzymatic assay with the purpose of detecting early contaminations by B. bruxellensis in red wine. We have developed a colorimetric enzymatic assay, based on the redox state of the 4-ethylphenol methylene hydroxylase co-factor, cytochrome C, that can detect and quantify low concentrations of 4-ethylphenol. The range of concentrations detected is well below the level detectable by the human nose. Combined to an enrichment step, this method allows the detection of B. bruxellensis at an initial concentration of less than 10 cells per ml

    National identity predicts public health support during a global pandemic

    Get PDF
    Understanding collective behaviour is an important aspect of managing the pandemic response. Here the authors show in a large global study that participants that reported identifying more strongly with their nation reported greater engagement in public health behaviours and support for public health policies in the context of the pandemic.Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = -0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics

    Four-Dimensional Consciousness

    Full text link

    Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media

    No full text
    The original publication can be found at www.springerlink.comDekkera and Brettanomyces yeast are important spoilage organisms in a number of food and beverage products. Isolates of both genera were cultured in a defined medium and supplemented with hydroxycinnamic acids and vinylphenols to investigate their influence on growth and the formation of ethyl phenol derivatives. The growth rate of Brettanomyces species in the presence of acids was reduced, and no significant conversion to vinyl or ethyl derivatives was observed. The growth rate and substrate utilisation rates of Dekkera anomala and Dekkera bruxellensis yeast differed depending on strain and the acid precursor present. Growth of D. bruxellensis was slowed by the presence of ferulic acid with the addition of 1 mM ferulic acid completely inhibiting growth. This study provides an insight into the spoilage potential of these organisms and possible control strategies involving hydroxycinnamic acids.Victoria Harris, Christopher M. Ford, Vladimir Jiranek and Paul R. Grbi
    corecore