690 research outputs found
A 1.4 GHz radio continuum and polarization survey at medium Galactic latitudes: I. Observation and reduction technique
A radio continuum survey at medium Galactic latitudes with the Effelsberg
100-m telescope is being carried out at a centre frequency of 1.4 GHz in total
power and linear polarization. Areas up to +/- 20 degree of Galactic latitude
are now being observed at a sensitivity of 15 mK TB total intensity and 8 mK TB
in linear polarization with an angular resolution of 9'35. This paper describes
the observing and reduction technique applied which results in absolutely
calibrated maps. The methods are illustrated by examples of images from the
survey.Comment: 12 pages, 9 figures, Accepted for publication in Astronomy and
Astrophysics Supp. Se
Polarization surveys of the Galaxy
We report on sensitive 21cm and 11cm polarization surveys of the Galactic
plane carried out with the Effelsberg 100-m telescope at arcmin angular
resolution and some related work. Highly structured polarized emission is seen
along the Galactic plane as well as up to very high Galactic latitudes. These
observations reflect Faraday effects in the interstellar medium. Polarized
foreground and background components along the line of sight, modified by
Faraday rotation and depolarization, add in a complex way. The amplitudes of
polarized emission features are highly frequency dependent. Small-scale
components decrease in amplitude rapidly with increasing frequency. We stress
the need for sensitive absolutely calibrated polarization data. These are
essential for baseline setting and a correct interpretation of small-scale
structures. Absolutely calibrated data are also needed to estimate the
high-frequency polarized background. A recent study of polarized emission
observed across the local Taurus-Auriga molecular cloud complexes indicates
excessive synchrotron emission within a few hundred parsecs. These results
suggest that possibly a large fraction of the Galactic high latitude total
intensity and polarized emission is of local origin.Comment: 6 pages with 2 PS figures. To be published in "Astrophysical
Polarized Backgrounds", eds. S. Cecchini, S. Cortiglioni, R. Sault and C.
Sbarra, AIP Conf. Pro
Unique properties of quadratic solitons
Quadratic spatial solitons exist in media with second order nonlinearities near the phase-matching condition for frequency mixing processes involving two or three waves of different frequency. Discussed here are a number of properties of these special solitons which are different from those of other spatial solitons which rely on optically induced index changes for guiding. First, the self-guiding properties of quadratic solitons are shown to have completely different origins than solitons which rely on index changes. Second, it is shown that there exists a large variety of quadratic solitons which contain two or three distinct spectral components with relative amplitudes depending on the phase mismatch, dimensionality of the propagation geometry, the soliton power and the launching conditions. Third, under appropriate conditions, solitons can be formed even when the group velocity directions for the spectral components lead to walk-off under normal circumstances. Fourth, for type II phase-matching in bulk crystals, seeded interactions lead to saturating amplifier characteristics
NuSTAR and Suzaku X-ray Spectroscopy of NGC 4151: Evidence for Reflection from the Inner Accretion Disk
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear
Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the
Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption,
and reflection properties of the active galactic nucleus (AGN) by applying
inner accretion disk reflection and absorption-dominated models. With a
time-averaged spectral analysis, we find strong evidence for relativistic
reflection from the inner accretion disk. We find that relativistic emission
arises from a highly ionized inner accretion disk with a steep emissivity
profile, which suggests an intense, compact illuminating source. We find a
preliminary, near-maximal black hole spin a>0.9 accounting for statistical and
systematic modeling errors. We find a relatively moderate reflection fraction
with respect to predictions for the lamp post geometry, in which the
illuminating corona is modeled as a point source. Through a time-resolved
spectral analysis, we find that modest coronal and inner disk reflection flux
variation drives the spectral variability during the observations. We discuss
various physical scenarios for the inner disk reflection model, and we find
that a compact corona is consistent with the observed features.Comment: 20 pages, 12 figures, accepted for publication in Ap
Modulational instability of solitary waves in non-degenerate three-wave mixing: The role of phase symmetries
We show how the analytical approach of Zakharov and Rubenchik [Sov. Phys.
JETP {\bf 38}, 494 (1974)] to modulational instability (MI) of solitary waves
in the nonlinear Schr\"oedinger equation (NLS) can be generalised for models
with two phase symmetries. MI of three-wave parametric spatial solitons due to
group velocity dispersion (GVD) is investigated as a typical example of such
models. We reveal a new branch of neck instability, which dominates the usual
snake type MI found for normal GVD. The resultant nonlinear evolution is
thereby qualitatively different from cases with only a single phase symmetry.Comment: 4 pages with figure
NuSTAR observations of the powerful radio-galaxy Cygnus A
We present NuSTAR observations of the powerful radio galaxy Cygnus A,
focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is
embedded in a cool-core galaxy cluster, and hence we also examine archival
XMM-Newton data to facilitate the decomposition of the spectrum into the AGN
and intracluster medium (ICM) components. NuSTAR gives a source-dominated
spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the
AGN has the form of a power law (Gamma~1.6-1.7) absorbed by a neutral column
density of N_H~1.6x10^23 cm^-2. However, we also detect curvature in the hard
(>10keV) spectrum resulting from reflection by Compton-thick matter out of our
line-of-sight to the X-ray source. Compton reflection, possibly from the outer
accretion disk or obscuring torus, is required even permitting a high-energy
cutoff in the continuum source; the limit on the cutoff energy is E_cut>111keV
(90% confidence). Interestingly, the absorbed power-law plus reflection model
leaves residuals suggesting the absorption/emission from a fast
(15,000-26,000km/s), high column-density (N_W>3x10^23 cm^-2), highly ionized
(xi~2,500 erg cm/s) wind. A second, even faster ionized wind component is also
suggested by these data. We show that the ionized wind likely carries a
significant mass and momentum flux, and may carry sufficient kinetic energy to
exercise feedback on the host galaxy. If confirmed, the simultaneous presence
of a strong wind and powerful jets in Cygnus A demonstrates that feedback from
radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN
activity but can occur simultaneously.Comment: 13 pages; accepted for publication in The Astrophysical Journa
Geographic distribution and genetic diversity of the Ehrlichia sp. from Panola Mountain in Amblyomma americanum
Background:
A novel Ehrlichia, closely related to Ehrlichia ruminantium, was recently discovered from Panola Mountain State Park, GA, USA. We conducted a study to determine if this agent was recently introduced into the United States.
Methods:
We developed a sensitive PCR assay based on the conserved gltA (citrate synthase) gene and tested DNA samples extracted from 1964 field-collected and 1835 human-biting Amblyomma americanum from 23 eastern states of the USA.
Results:
The novel agent was detected in 36 ticks collected from 10 states between 1998 and 2006. Infected ticks were collected both from vegetation (n = 14, 0.7%) and from humans (n = 22, 1.2%). Fragments of the conserved gltA gene and the variable map1 gene were sequenced from positive samples. Two distinct clades, with 10.5% nucleic acid divergence over the 730 bp map1 sequence, were identified.
Conclusion:
These data suggest that the Panola Mountain Ehrlichia was not recently introduced to the United States; this agent has an extensive distribution throughout the range of its tick vector, has been present in some locations for several years, and displays genetic variability. Furthermore, people in several states were exposed to this agent through the bite of infected ticks, underscoring the potential public health risk of this emerging ehrlichiosis
SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg
We present the results of 12CO J = 1-0 line observations of eleven Galactic
supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory
(SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO
survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs
interacting with molecular clouds. The mapping areas for the individual SNRs
are determined to cover their full extent in the radio continuum. We used
halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for
the rest. We detected CO emission towards most of the remnants. In six SNRs,
molecular clouds showed a good spatial relation with their radio morphology,
although no direct evidence for the interaction was detected. Two SNRs are
particularly interesting: G85.4+0.7, where there is a filamentary molecular
cloud along the radio shell, and 3C434.1, where a large molecular cloud appears
to block the western half of the remnant. We briefly summarize the results
obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages,
12 figures, and 3 table
The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014
- …