47 research outputs found

    Inelastic collisions in an exactly solvable two-mode Bose-Einstein Condensate

    Get PDF
    Inelastic collisions occur in Bose-Einstein condensates, in some cases, producing particle loss in the system. Nevertheless, these processes have not been studied in the case when particles do not escape the trap. We show that such inelastic processes are relevant in quantum properties of the system such as the evolution of the relative population, the self trapping effect and the probability distribution of particles. Moreover, including inelastic terms in the model of the two-mode condensate allows for an exact analytical solution. Using this solution, we show that collisions favor the generation of entanglement between the modes of the condensate as long as the collision rate does not exceed the natural frequency of the system

    The black hole final state for the Dirac fields In Schwarzschild spacetime

    Full text link
    We show that the internal stationary state of a black hole for massless Dirac fields can be represented by an entangled state of collapsing matter and infalling Hawking radiation. This implies that the Horowitz-Maldacena conjecture for the black hole final state originally proposed for the massless scalar fields is also applicable to fermionic fields as well. For an initially mixed state we find that the measure of mixedness is expected to decrease under evaporation

    Alice falls into a black hole: Entanglement in non-inertial frames

    Full text link
    Two observers determine the entanglement between two free bosonic modes by each detecting one of the modes and observing the correlations between their measurements. We show that a state which is maximally entangled in an inertial frame becomes less entangled if the observers are relatively accelerated. This phenomenon, which is a consequence of the Unruh effect, shows that entanglement is an observer-dependent quantity in non-inertial frames. In the high acceleration limit, our results can be applied to a non-accelerated observer falling into a black hole while the accelerated one barely escapes. If the observer escapes with infinite acceleration, the state's distillable entanglement vanishes.Comment: I.F-S published before with maiden name Fuentes-Guridi Replaced with published version. Phys. Rev. Lett. in pres

    Relativistic Quantum Games in Noninertial Frames

    Full text link
    We study the influence of Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners' Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for maximally entangled initial state, the classical strategy C (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett. 83 3077) is no more a superior move. We show that the dilemma like situation is resolved in favor of one player or the other.Comment: 8 Pages, 2 figures, 2 table

    Entanglement of Dirac fields in non-inertial frames

    Full text link
    We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.Comment: 15 pages, with 8 figures (Mar 2006); accepted to Physical Review A, July 2006 - slightly revise

    The entangling side of the Unruh-Hawking effect

    Full text link
    We show that the Unruh effect can create net quantum entanglement between inertial and accelerated observers depending on the choice of the inertial state. This striking result banishes the extended belief that the Unruh effect can only destroy entanglement and furthermore provides a new and unexpected source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc

    Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames

    Full text link
    We study the effect of decoherence on a qubit-qutrit system under the influence of global, local and multilocal decoherence in non-inertial frames. We show that the entanglement sudden death can be avoided in non-inertial frames in the presence of amplitude damping, depolarizing and phase damping channels. However, degradation of entanglement is seen due to Unruh effect. It is shown that for lower level of decoherence, the depolarizing channel degrades the entanglement more heavily as compared to the amplitude damping and phase damping channels. However, for higher values of decoherence parameters, amplitude damping channel heavily degrades the entanglement of the hybrid system. Further more, no ESD is seen for any value of Rob's acceleration.Comment: 16 pages, 5 .eps figures, 1 table; Quantum Information Processing, published online, 5 July, 201

    Relativistic quantum clocks

    Full text link
    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for "Workshop on Time in Physics" Zurich 201
    corecore