11 research outputs found

    Scattering properties of a cut-circle billiard waveguide with two conical leads

    Full text link
    We examine a two-dimensional electron waveguide with a cut-circle cavity and conical leads. By considering Wigner delay times and the Landauer-B\"{u}ttiker conductance for this system, we probe the effects of the closed billiard energy spectrum on scattering properties in the limit of weakly coupled leads. We investigate how lead placement and cavity shape affect these conductance and time delay spectra of the waveguide.Comment: 18 pages, 11 figures, accepted for publication in Phys. Rev. E (Jan. 2001

    Reiterative Chiral Resolution/Racemization/Recycle (RRR Synthesis) for an Effective and Scalable Process for the Enantioselective Synthesis of a Dual IDO1/TDO2 Inhibitor Imidazoisoindole Derivative

    No full text
    Herein, we report an effective and scalable highly enantioselective synthesis of an 5H-imidazo[5,1-a]isoindole derivative via an RRR-synthesis approach (resolution-racemization-recycle). Chiral resolution performed with the aid of 2,3-dibenzoyl-d-tartaric acid allowed the obtaining of the desired enantiomer in high enantiopurity (>99% ee) and good yield. The undesired enantiomer was subjected to racemization under basic conditions and again to resolution, improving the efficiency of the entire process. The asymmetric formation of the new stereocenter in an early stage of the synthesis scheme was also investigated by means of organocatalytic systems

    Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models.

    No full text
    Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials
    corecore