25,704 research outputs found

    Flow curves of colloidal dispersions close to the glass transition: Asymptotic scaling laws in a schematic model of mode coupling theory

    Full text link
    The flow curves, viz. the curves of stationary stress under steady shearing, are obtained close to the glass transition in dense colloidal dispersions using asymptotic expansions in a schematic model of mode coupling theory. The shear thinning of the viscosity in fluid states and the yielding of glassy states is discussed. At the transition between fluid and shear-molten glass, simple and generalized Herschel-Bulkley laws are derived with power law exponents that can be computed for different particle interactions from the equilibrium structure factor.Comment: 14 pages, 14 figures, 4 tables, Eur. Phys. J. E (submitted

    Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data

    Full text link
    A recent first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and compared to simulation results of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations within simplified models rationalize the data over variations in shear rate and viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan. 2003

    Equations of structural relaxation

    Full text link
    In the mode coupling theory of the liquid to glass transition the long time structural relaxation follows from equations solely determined by equilibrium structural parameters. The present extension of these structural relaxation equations to arbitrarily short times on the one hand allows calculations unaffected by model assumptions about the microscopic dynamics and on the other hand supplies new starting points for analytical studies. As a first application, power-law like structural relaxation at a glass-transition singularity is explicitly proven for a special schematic MCT model.Comment: 11 pages, 3 figures; talk given at the Seventh international Workshop on disordered Systems, Molveno, Italy, March 199

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    A quantitative test of the mode-coupling theory of the ideal glass transition for a binary Lennard-Jones system

    Full text link
    Using a molecular dynamics computer simulation we determine the temperature dependence of the partial structure factors for a binary Lennard-Jones system. These structure factors are used as input data to solve numerically the wave-vector dependent mode-coupling equations in the long time limit. Using the so determined solutions, we compare the predictions of mode-coupling theory (MCT) with the results of a previously done molecular dynamics computer simulation [Phys. Rev. E 51, 4626 (1995), ibid. 52, 4134 (1995)]. From this comparison we conclude that MCT gives a fair estimate of the critical coupling constant, a good estimate of the exponent parameter, predicts the wave-vector dependence of the various nonergodicity parameters very well, except for very large wave-vectors, and gives also a very good description of the space dependence of the various critical amplitudes. In an attempt to correct for some of the remaining discrepancies between the theory and the results of the simulation, we investigate two small (ad hoc) modifications of the theory. We find that one modification gives a worse agreement between theory and simulation, whereas the second one leads to an improved agreement.Comment: Figures available from W. Ko

    Evaluation of photogrammetric flight under icing conditions on March 23, 1978

    Get PDF
    In a double passage through a route laid out in a stagnation zone of the Bavarian forest, it was found that the stagnation and attendant elevation increases the danger of icing. Conversely, it turned out that formation of precipitation reduces the icing intensity. A comparison of both factors showed: the reduction of ice formation through precipitation equals the increase due to stagnation, or even exceeds it

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin
    corecore