18,150 research outputs found

    Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data

    Full text link
    A recent first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and compared to simulation results of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations within simplified models rationalize the data over variations in shear rate and viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan. 2003

    Simple Current Actions of Cyclic Groups

    Full text link
    Permutation actions of simple currents on the primaries of a Rational Conformal Field Theory are considered in the framework of admissible weighted permutation actions. The solution of admissibility conditions is presented for cyclic quadratic groups: an irreducible WPA corresponds to each subgroup of the quadratic group. As a consequence, the primaries of a RCFT with an order n integral or half-integral spin simple current may be arranged into multiplets of length k^2 (where k is a divisor of n) or 3k^2 if the spin of the simple current is half-integral and k is odd.Comment: Added reference, minor change

    The relativistic self-energy in nuclear dynamics

    Get PDF
    It is a well known fact that Dirac phenomenology of nuclear forces predicts the existence of large scalar and vector mean fields in matter. To analyse the relativistic self-energy in a model independent way, modern high precision nucleon-nucleon (NNNN) potentials are mapped on a relativistic operator basis using projection techniques. This allows to compare the various potentials at the level of covariant amplitudes were a remarkable agreement is found. It allows further to calculate the relativistic self-energy in nuclear matter in Hartree-Fock approximation. Independent of the choice of the nucleon-nucleon interaction large scalar and vector mean fields of several hundred MeV magnitude are generated at tree level. In the framework of chiral EFT these fields are dominantly generated by contact terms which occur at next-to-leading order in the chiral expansion. Consistent with Dirac phenomenology the corresponding low energy constants which generate the large fields are closely connected to the spin-orbit interaction in NNNN scattering. The connection to QCD sum rules is discussed as well.Comment: 49 pages, 13 figure

    The absoption refrigerator as a thermal transformer

    Full text link
    The absorption refrigerator can be considered a thermal transformer, i.e. a device that is analogous to the electric transformer. The analogy is based on a correspondence between the extensive quantities entropy and electric charge and that of the intensive variables temperature and electric potential

    Integration through transients for Brownian particles under steady shear

    Full text link
    Starting from the microscopic Smoluchowski equation for interacting Brownian particles under stationary shearing, exact expressions for shear-dependent steady-state averages, correlation and structure functions, and susceptibilities are obtained, which take the form of generalized Green-Kubo relations. They require integration of transient dynamics. Equations of motion with memory effects for transient density fluctuation functions are derived from the same microscopic starting point. We argue that the derived formal expressions provide useful starting points for approximations in order to describe the stationary non-equilibrium state of steadily sheared dense colloidal dispersions.Comment: 17 pages, Submitted to J. Phys.: Condens. Matter; revised version with minor correction
    • …
    corecore