202 research outputs found

    Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOB(T)).

    Get PDF
    Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project

    3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model

    Get PDF
    Background & Aims Liver biopsy, the gold standard for assessing liver fibrosis, suffers from limitations due to sampling error and invasiveness. There is therefore a critical need for methods to non-invasively quantify fibrosis throughout the entire liver. The goal of this study was to use molecular Magnetic Resonance Imaging (MRI) of Type I collagen to non-invasively image liver fibrosis and assess response to rapamycin therapy. Methods Liver fibrosis was induced in rats by bile duct ligation (BDL). MRI was performed 4, 10, or 18 days following BDL. Some BDL rats were treated daily with rapamycin starting on day 4 and imaged on day 18. A three-dimensional (3D) inversion recovery MRI sequence was used to quantify the change in liver longitudinal relaxation rate (ΔR1) induced by the collagen-targeted probe EP-3533. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for Sirius Red staining and hydroxyproline content. Results ΔR1 increased significantly with time following BDL compared to controls in agreement with ex vivo measures of increasing fibrosis. Receiver operating characteristic curve analysis demonstrated the ability of ΔR1 to detect liver fibrosis and distinguish intermediate and late stages of fibrosis. EP-3533 MRI correctly characterized the response to rapamycin in 11 out of 12 treated rats compared to the standard of collagen proportional area (CPA). 3D MRI enabled characterization of disease heterogeneity throughout the whole liver. Conclusions EP-3533 allowed for staging of liver fibrosis, assessment of response to rapamycin therapy, and demonstrated the ability to detect heterogeneity in liver fibrosis.National Cancer Institute (U.S.) (CA140861)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (EB009062)Sanofi Aventis (Firm

    A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating and painful cancers. It is often highly resistant to therapy owing to inherent chemoresistance and the desmoplastic response that creates a barrier of fibrous tissue preventing transport of chemotherapeutics into the tumor. The growth of the tumor in pancreatic cancer often leads to invasion of other organs and partial or complete biliary obstruction, inducing intense pain for patients and necessitating tumor resection or repeated stenting. Here, we have developed a delivery device to provide enhanced palliative therapy for pancreatic cancer patients by providing high concentrations of chemotherapeutic compounds locally at the tumor site. This treatment could reduce the need for repeated procedures in advanced PDAC patients to debulk the tumor mass or stent the obstructed bile duct. To facilitate clinical translation, we created the device out of currently approved materials and drugs. We engineered an implantable poly(lactic-co-glycolic)-based biodegradable device that is able to linearly release high doses of chemotherapeutic drugs for up to 60 days. We created five patient-derived PDAC cell lines and tested their sensitivity to approved chemotherapeutic compounds. These in vitro experiments showed that paclitaxel was the most effective single agent across all cell lines. We compared the efficacy of systemic and local paclitaxel therapy on the patient-derived cell lines in an orthotopic xenograft model in mice (PDX). In this model, we found up to a 12-fold increase in suppression of tumor growth by local therapy in comparison to systemic administration and reduce retention into off-target organs. Herein, we highlight the efficacy of a local therapeutic approach to overcome PDAC chemoresistance and reduce the need for repeated interventions and biliary obstruction by preventing local tumor growth. Our results underscore the urgent need for an implantable drug-eluting platform to deliver cytotoxic agents directly within the tumor mass as a novel therapeutic strategy for patients with pancreatic cancer. Keywords: Pancreatic cancer; Chemoresistance; Local delivery; Patient-derived xenograft; Paclitaxel; Poly(lactic-co-glycolic acid)National Institutes of Health (U.S.) (Grant P30-CA14051

    Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of chronic liver injury in humans, epidermal growth factor (EGF) and EGF receptor (EGFR) are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC). Chronic liver injury also leads to hepatic stellate cell (HSC) differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl<sub>4</sub>)-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl<sub>4 </sub>to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver.</p> <p>Methods</p> <p>CCl<sub>4 </sub>in olive oil was administered to strain A/J mice three times per week by oral gavage.</p> <p>Results</p> <p>Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl<sub>4 </sub>treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl<sub>4 </sub>treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased.</p> <p>Conclusions</p> <p>Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl<sub>4</sub>-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.</p
    • …
    corecore