4 research outputs found

    Piperlongumine is a ligand for the orphan nuclear receptor 4A1 (NR4A1)

    Get PDF
    Piperlongumine and derivatives are being developed as anticancer agents which act primarily as inducers of reactive oxygen species (ROS) in cancer cell lines. Many of the anticancer activities of piperlongumine resemble those observed for bis-indole derived compounds that bind the orphan nuclear receptor 4A1 (NR4A1) and act as inverse receptor agonists to inhibit NR4A1-regulated pro-oncogenic pathways and genes. In this study we show that like other NR4A1 inverse agonists piperlongumine inhibited RKO, SW480 and HCT116 colon cancer cell growth migration and invasion and induced apoptosis. Piperlongumine also downregulated the pro-reductant isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain-containing 5 (TXNDC5) gene products resulting in the induction of ROS as previously observed for other inverse NR4A1 agonists. ROS also induced sestrin2 and this resulted in activation of AMPK phosphorylation and inhibition of mTOR pathway signaling. It has previously been reported that these pathways/genes are also regulated by inverse NR4A1 agonists or by knockdown of NR4A1. We also observed that piperlongumine directly bound NR4A1, inhibited NR4A1-dependent transactivation and interactions of the NR4A1/Sp1 complex bound to the GC-rich promoter of the NR4A1-regulated G9a gene

    DataSheet2_Piperlongumine is a ligand for the orphan nuclear receptor 4A1 (NR4A1).PDF

    No full text
    Piperlongumine and derivatives are being developed as anticancer agents which act primarily as inducers of reactive oxygen species (ROS) in cancer cell lines. Many of the anticancer activities of piperlongumine resemble those observed for bis-indole derived compounds that bind the orphan nuclear receptor 4A1 (NR4A1) and act as inverse receptor agonists to inhibit NR4A1-regulated pro-oncogenic pathways and genes. In this study we show that like other NR4A1 inverse agonists piperlongumine inhibited RKO, SW480 and HCT116 colon cancer cell growth migration and invasion and induced apoptosis. Piperlongumine also downregulated the pro-reductant isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain-containing 5 (TXNDC5) gene products resulting in the induction of ROS as previously observed for other inverse NR4A1 agonists. ROS also induced sestrin2 and this resulted in activation of AMPK phosphorylation and inhibition of mTOR pathway signaling. It has previously been reported that these pathways/genes are also regulated by inverse NR4A1 agonists or by knockdown of NR4A1. We also observed that piperlongumine directly bound NR4A1, inhibited NR4A1-dependent transactivation and interactions of the NR4A1/Sp1 complex bound to the GC-rich promoter of the NR4A1-regulated G9a gene.</p

    DataSheet1_Piperlongumine is a ligand for the orphan nuclear receptor 4A1 (NR4A1).DOCX

    No full text
    Piperlongumine and derivatives are being developed as anticancer agents which act primarily as inducers of reactive oxygen species (ROS) in cancer cell lines. Many of the anticancer activities of piperlongumine resemble those observed for bis-indole derived compounds that bind the orphan nuclear receptor 4A1 (NR4A1) and act as inverse receptor agonists to inhibit NR4A1-regulated pro-oncogenic pathways and genes. In this study we show that like other NR4A1 inverse agonists piperlongumine inhibited RKO, SW480 and HCT116 colon cancer cell growth migration and invasion and induced apoptosis. Piperlongumine also downregulated the pro-reductant isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain-containing 5 (TXNDC5) gene products resulting in the induction of ROS as previously observed for other inverse NR4A1 agonists. ROS also induced sestrin2 and this resulted in activation of AMPK phosphorylation and inhibition of mTOR pathway signaling. It has previously been reported that these pathways/genes are also regulated by inverse NR4A1 agonists or by knockdown of NR4A1. We also observed that piperlongumine directly bound NR4A1, inhibited NR4A1-dependent transactivation and interactions of the NR4A1/Sp1 complex bound to the GC-rich promoter of the NR4A1-regulated G9a gene.</p

    Flavone and Hydroxyflavones Are Ligands That Bind the Orphan Nuclear Receptor 4A1 (NR4A1)

    No full text
    It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3′-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor–ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1
    corecore