1,781 research outputs found

    Aqua[N-(2,5-dihydroxybenzyl)imino­diacetato]copper(II)

    Get PDF
    The title complex, [Cu(C11H11NO6)(H2O)], contains a CuII atom in a distorted square-pyramidal geometry. The metal centre is coordinated in the basal sites by one water mol­ecule and two carboxyl­ate O atoms and one N atom of the tetra­dentate ligand [Cu—O range, 1.9376 (11)–1.9541 (12), Cu—N, 1.9929 (12) Å] while the apical site is occupied by a hydro­quinone O donor atom [Cu—O, 2.3746 (12) Å]. Inter­molecular hydrogen bonding inter­actions involving both hydro­quinone hydr­oxy groups and the coordinated water as donors give a three-dimensional framework structure

    A Strategy for Modelling Mechanochemically Induced Unzipping and Scission of Chemical Bonds in Double-Network Polymer Composite

    Get PDF
    A molecular mechanics model for covalent and ionic double-network polymer composites was developed in this study to investigate mechanisms of mechanochemically induced unzipping and scission of chemical bonds. Morse potential function was firstly applied to investigate mechanical unzipping of the covalent bonds, and then stress-dependent mechanical energy for the interatomic covalent bonds was discussed. A new mechanochemical model was formulated for describing the mechanically induced ionic bond scissions based on the Morse potential model and equations for electrostatic forces. Based on this newly proposed model, mechanochemical behaviors of several common interatomic interaction types (e.g., A+B-, A2+B2-/A2+2B-/2A+B2- and A3+B3-/A3+3B-/3A+B3-) of the ionic bonds have been quantitatively described and analyzed. Finally, mechanochemical unzipping of the covalent bonds and dissociation of the ionic bonds have been characterized and analyzed based on the molecular mechanics model, which has well predicted the chemical and mechanochemical activations in the covalent and ionic double-network polymer composites

    Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability

    Get PDF
    Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR) on growth rate and tolerance to food-deprivation in juvenile crucian carp (Carassius auratus) under varying levels of food availability. To address this issue, 19 high and 16 low SMR (individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation) for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food-deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e., food shortage)
    corecore