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Abstract: A molecular mechanics model for covalent and ionic double-network polymer 

composites was developed in this study to investigate mechanisms of mechanochemically 

induced unzipping and scission of chemical bonds. Morse potential function was firstly 

applied to investigate mechanical unzipping of the covalent bonds, and then stress-dependent 

mechanical energy for the interatomic covalent bonds was discussed. A new 

mechanochemical model was formulated for describing the mechanically induced ionic bond 

scissions based on the Morse potential model and equations for electrostatic forces. Based on 

this newly proposed model, mechanochemical behaviors of several common interatomic 

interaction types (e.g., A+B-, A2+B2-/A2+2B-/2A+B2- and A3+B3-/A3+3B-/3A+B3-) of the ionic 

bonds have been quantitatively described and analyzed. Finally, mechanochemical unzipping 

of the covalent bonds and dissociation of the ionic bonds have been characterized and 

analyzed based on the molecular mechanics model, which has well predicted the chemical 

and mechanochemical activations in the covalent and ionic double-network polymer 
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composites.   

Keywords: mechanochemical; molecular mechanics; modelling; bond scission; 

double-network polymer  

1. Introduction  

Understanding the chemical responses of polymers to mechanical loading are crucial for 

wide-range research areas in polymer science and technology, as well as for designs of new 

types of stress-responsive and energy-transduction polymers [1-3]. Mechanical loading, i.e., 

using high pressure, mechanical forces or ultrasound [4-6], provides an effective stimulus 

approach for chemists to design/fabricate novel materials [7-9], similar to those using heat, 

light or electricity [10-12]. Various types of stress-responsive and energy-transduction 

polymers have been produced based on the chemical reactions of molecule bonds in response 

to the external stresses or forces, including flow-induced mechanochemistry of polymers in 

solution [13], mechanically-induced dichroism [14,15] and ultrasonication-induced chain 

scissions in polymers [16]. These mechanochemical processes in polymers have attracted 

great attention due to their special constitutive relationships and significant changes in 

properties. However, currently there are few models or constitutive equations available to 

describe the working mechanisms (or theoretical and experimental principles) and 

constitutive relationships for the mechanochemical behaviors of polymers [17-19]. There is 

no special theory which could be used to explain the experimental results and explore the 

fundamental mechanisms, thus resulting in the theoretical studies seriously lagged behind the 

experimental ones. Clearly, it is crucial to develop theoretical models for the 

mechanochemical activations in the polymers and provide a guidance for further design and 
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optimization of the next generation polymers.  

Conventional hydrogels are composed of a single network of hydrophilic polymers. They 

usually break at a tensile stress less than sub-MPa and a strain less than 100% [20,21]. Their 

mechanical properties have been regarded as soft and weak [21]. For this reason, 

interpenetrating but independently cross-linked double network (DN) hydrogels have been 

developed to improve the mechanical strength [20-23]. These DN hydrogels, which are 

highly stretchable and tough, have been considered as the potential metamaterials for robot, 

medicine and aerospace [20-23]. A high content of water molecules and improved mechanical 

strength and toughness have been achieved in the DN hydrogels [22,23]. However, the 

enhancing mechanisms of mechanical properties of the DN hydrogels are different from those 

general ones for enhancing the toughness of soft polymeric materials. It was demonstrated 

that the improved strength and toughness are originated from the local yielding mechanism to 

resist the externally mechanical loading [24]. Therefore, the constitutive relationships of the 

DN hydrogels present an interesting but challenging issue in the modeling and simulation of 

their mechanical behaviors.  

Previously, several theoretical models have been proposed to study and characterize the 

mechanochemical behavior of the DN hydrogels [25-28]. However, chemical and 

mechanochemical activations have not been considered or modeled in those previous studies, 

and only mechanical behaviors of the DN hydrogels have been investigated according to 

mechanical testing results. Therefore, it is critical to develop a new model for exploring the 

chemical and mechanochemical activations and the working mechanisms of the 

mechanochemical behaviors of the DN hydrogels.  
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In this study, a molecular mechanics model was proposed based on the Morse potential 

function model by combining the influences of bond unzipping and scission for the DN 

hydrogel. The Morse potential function was initially employed to investigate the mechanical 

unzipping of covalent bonds. Meanwhile, a mechanochemical model was formulated for the 

mechanically induced scissions of ionic bonds according to the Morse potential function 

model and electrostatic force equation. The mechanical behaviors of several interatomic 

interaction types of the ionic bonds have been quantitatively analyzed and discussed. Finally, 

the mechanochemically induced covalent-bond stretching and ionic-bond dissociation have 

been characterized and analyzed using the molecular mechanics model to predict the 

chemical or mechanochemical activation in the DN hydrogel/polymer.  

2. Morse potential function of mechanochemical unzipping for covalent network  

Interatomic interaction of a covalent bond is represented by the Morse potential theory, and 

the interatomic potential (  U x ) is presented as [29]:  

 
 1 exp( 2 ) 2exp( )

c

U x
x x

D
                          (1) 

where cD  is the dissociation energy of the interatomic covalent bond without vibrations,   

  is the Morse coefficient and x  is the distance of the interatomic bond [30]. The function   

 U x  is linked to the Morse potential of the covalent bond as a function of bond distance x . 

However, if the bond is under a constant tension force Uf  applied to either of its ends, the 

activation energy required to break the bond is diminished from cD  to  U x . A schematic 

illustration for the distance of interatomic bonds under a constant force is presented in Figure 

1. When the covalent bond is stretched with the force per unit area Uf >0, the distance of 

interatomic covalent bond is increased from x  to x x . The variation of the activation 
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energy for disassociation of the bond under a force of Uf  is given by [31], 

 
 

U

U mU U

m m U

m

1 1

1 ln
2

1 1c

f

U f Ff f

D F F f

F

 

  

 

                    (2) 

where mF  is the ultimate strength of the bond. The function  UU f  shows the variations of 

the Morse potential of the covalent bond as a function of tensile force. Equation (2), which 

describes the conversion of mechanical energy into chemical one, can be used to account for 

the dissociation of mechanically strained bonds. Both the equations (1) and (2) are originated 

from the Morse potential function model, and they present the constitutive relationships for 

the mechanical energy with the interatomic bond distance ( x ) and stress Uf  for the covalent 

network. When a chemical bond of the covalent network is extended before bond breaking, 

its energy diminishes. At the equilibrium condition, the deformation energy of the covalent 

bond can be written as [32]:  

0 0

def U U

r V

r V

U f dr dV                            (3) 

where Uf  and U  are the force and stress applied on the bond, 0r  and r  are the lengths of 

the initial and deformed bonds, while 0V  and  V  are the corresponding activation volumes.  

[Figure 1] 

Here, a constant tensile force ( Uf ) is applied, and leads to a change in the Morse potential 

and deformation of the chemical bond. The mechanical energy can thus be expressed as: 

 U defmW U f U                             (4) 

It is assumed that the isotropic covalent network is under a constant tensile force ( Uf ), thus, 

the mechanical energy can be given by, 
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  
0

U1 2exp( ) exp( 2 )

r

m c

r

W D x x f dr                     (5) 

Here, we introduce a dimensionless force  U

m

f
P

F
 (  0 1P ), where 


m

2
cF D  is the 

maximum force under a static elastic tension of the bond according to the condition 

  2 2 0d U x dx  [29]. Therefore, equation (5) can be rewritten as: 

    1 2exp( ) exp( 2 )
2

m c c

P
W D x x D x                     (6) 

The values of the bond elongation and interatomic force are related to the mechanical 

energy for the deformation (or rupture) of the covalent bonds. It is necessary to study the 

dependence of mechanical energy on the bond elongation, which has a crucial role in 

determining the interatomic force. The evolution curves of the mechanical energy ( m cW D ) as 

a function of bond elongation ( x ) with a given constant Morse coefficient ( ) and 

dimensionless force (P ) are presented in Figure 2. When the bond is stressed, it is found that 

the Morse potential is gradually decreased while the mechanical energy is increased with an 

increase in the bond elongation. As shown in Figure 2(a), the mechanical energy for the 

covalent bond stretching is increased with an increase in the Morse coefficient ( ) at the 

same bond elongation. If the Morse coefficient ( ) is assumed to link directly to the bond 

number (which is defined as the number of the chemical bonds in a covalent network). More 

mechanical energy is necessary to stretch the covalent bonds to a given elongation due to the 

increase in the bond number and the value of x . On the other hand, the mechanical energy 

is also gradually increased with an increase in the applied force (e.g., the dimensionless force 

P ) at a constant Morse coefficient ( ) due to the increase in the mechanical energy for 

deformation, where the Morse potential of the bond is kept a constant as presented in Figure 
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2(b). These results clearly show that the mechanical energy of the covalent bonds is 

determined by the bond elongation, bond number (Morse potential constant) and the applied 

force.  

[Figure 2] 

According to equation (6), a constitutive relationship between the force per unit area and 

displacement over the initial distance of the covalent bond can be written as,  

 m

m 2exp( ) 2exp( 2 )
2

c

W P
S D x x

x
  

  
          

            (7) 

Figures 3(a) and 3(b) plot the constitutive relationships of the stress function and bond 

elongation function for the covalent bonds. For a given Morse coefficient, e.g.,  =1010, 

2×1010, 3×1010, 4×1010 or 5×1010, it is found that the force per unit area gradually increases 

when the displacement over the initial distance of the covalent bond is increased from 0 to 

0.68×10-10m, 0.36×10-10m, 0.24×10-10m, 0.17×10-10m or 0.14×10-10m, respectively, as shown 

in Figure 3(a). However, it becomes decreasing with the further increase in the bond 

elongation. This indicates that the inter-atomic force per unit area among the covalent bonds 

is initially increased and then decreased with the gradual increase in the bond elongation.  

Dependence of the normalized stress on the force per unit area of the covalent bond is 

shown in Figure 3(b). It reveals that the mechanical force is gradually increased with an 

increase in the external applied stress, where the bond elongation reaches to a constant value. 

It indicates that the externally applied force has a strong influence on the force per unit area 

of the covalent bonds, as they have been stretched to a constant bond elongation.  

[Figure 3] 
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3. Modelling of mechanochemically induced scissions of ionic bonds 

The Morse potential was used for the covalent bonds in the above section under a 

mechanical loading. Whereas the mechanochemical behavior of the ionic bond is different 

from that of the covalent bond as the bonds will be broken under a large force. It is necessary 

to consider the electrostatic force for the ionic bond, in which the cationic and anionic groups 

have interactively attractive forces resulted from the mechanochemically induced bond 

scissions [33]. However, there was no previous work considering this in modelling and 

simulation. 

Under a mechanical loading applied to the ionic bond (only an axially tensile force is 

considered and discussed in this study), the cationic and anionic groups have the polarization 

interactions after the ionic bonds have been dissociated and then they are separated from each 

other. There are dipolar and intermolecular forces resulted from the electrostatic forces 

among the cationic and anionic groups. These inter-molecular forces are able to resist the 

external loading and have a following constitutive relationship with the spatial distance of the 

cationic and anionic groups [33].  

2 2 2 2

1 2 2 1

p

e e e e
F k

R R l R l R l l

 
     

    
                  (8) 

where k  ( k =9×109N･m2/C2) is the electrostatic constant, e (e=1.6×10-19C) is the elementary 

charge. R is the end-to-end distance of two groups, and 1l  and 2l  are the lengths of the two 

groups along the axial force. It is assumed that  1 2l l r  and  x R r  in this study. 

Therefore, the equation (8) can be rewritten as,  

2 2 2

2p

e e e
F k

R R r R r

 
    

  
                     (9) 
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Here it is necessary to determine the boundary conditions for the electrostatic force as it 

begins dominant after the bond scission. To determine the initial boundary of the 0R , the 

static elastic tension ( mF ) of the bond is needed in order to describe the ionic bond scission, 

which has been ruptured by means of the mechanical force. Therefore, dimensionless forces 

are introduced: P =1 and 



2
i

m iF D [33], in which iD  is the dissociation energy and  i  is 

the coefficient in the Morse expression of the interatomic ionic bond. There is a conversion of 

mechanical into chemical energy in the process of the ionic bond scission, e.g., 

     0def i m iU D F R r D  and 


 0

2

i

R r . Therefore, the boundary of the R  is ranged from 

(


 0

2

i

R r ) to (R ). The mechanical energy to resist the electrostatic force of an ionic bond 

can then be presented as:  

   
0 0

2 2 2

2
R R

e p
R R

e e e
W F d x k d R r

R R r R r

 
            
             (10) 

Thus, 

 
22

2 0
02 2 2 2

0

2
ln ln     where  e

i

RR
W k e R r

R r R r 

   
         

    
          (11) 

According to equation (11), the electrostatic force among cationic and anionic groups is 

gradually decreased with the increase in the mechanically induced scissions. However, the 

mechanical energy to resist the increase in electrostatic force is gradually increased as shown 

in Figure 4(a). It increases sharply at the initial elongation of the ionic bonds, but then the 

increase rate decreases as the strength of electrostatic force is decreased. Furthermore, the 

mechanical energy is increased when the value of 0R  is decreased from 1.5r, 1.4r, 1.25r to 

1.2r. These simulation results reveal that the elongation of the ionic bond has a strong effect 
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on both the electrostatic force and mechanical energy.  

Figure 4(b) depicts the relationship between the mechanical energy of the ionic bond and 

Morse potential constant, according to the equation (11). For different values of R r =1.01, 

1.05, 1.2 and 2.0, the mechanical energy to resist the electrostatic force of the ionic bond 

increases gradually with the increase of Morse potential constant. If the Morse potential 

constant is assumed to be the bond number, the mechanical energy is gradually increased 

with the increase of the bond number as each bond is stretched to a constant elongation of 

R r =1.01, 1.05, 1.2 and 2.0. Results clearly show that the bond number also plays a critical 

role to influence the mechanical energy and resist the electrostatic force even after the 

mechanically induced scissions of these ionic bonds.  

[Figure 4] 

However, equation (11) only presents the electrostatic interaction for the ionic bond of 

A+B- type, of which the cationic group has the same electric charge with that of the anionic 

group. It is necessary to characterize the electrostatic interactions of the ionic bond types of 

A2+2B- (or 2A+B2-) and A3+3B- (or 3A+B3-), in order to separate the effects of electric charge 

on the electrostatic interaction of the cationic group (or groups) and anionic group (or groups). 

Figures 5(a) and 5(b) present the electrostatic interactions for the A2+2B- (or 2A+B2-) and 

A3+3B- (or 3A+B3-) ionic bonds, respectively, under an axial tensile force. It is found that the 

electrostatic interaction of the A2+2B- (or 2A+B2-) bond is same with that of the A2+B2- bond 

along the axial direction, as their bond elongations are kept a constant. While the electrostatic 

interaction of the A3+3B- (or 3A+B3-) bond is same with that of the A3+B3- bond along the 

axial direction. Clearly, the electrostatic interaction force is only determined by the distance 
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of the cationic and anionic groups along the axial direction.  

[Figure 5] 

The electrostatic force of the mechanically induced scissions of the A2+2B- (or 2A+B2-) 

ionic bond and A3+3B- (or 3A+B3-) ionic bond can now be presented as,  

2 2 2 2 2 2

2 2 2 2 2 2

(2 ) (2 ) (2 )
2 4 2

(3 ) (3 ) (3 )
2 9 2

p

p

e e e e e e
F k k

R R r R r R R r R r

e e e e e e
F k k

R R r R r R R r R r

    
           

       


   
                 

         (12) 

According to equation (12), the mechanical energy that is needed to resist the electrostatic 

force is given below,  

22
2 0

02 2 2 2

0

22
2 0

02 2 2 2

0

2
4 ln ln     where  

2
9 ln ln     where  

e

i

e

i

RR
W k e R r

R r R r

RR
W k e R r

R r R r





    
          

     


   
              

         (13) 

Figures 6(a) and 6(b) present the numerical results of the mechanical energy to resist the 

electrostatic forces for the A+B-, A2+B2- (A2+2B- or 2A+B2-) and A3+B3- (A3+3B- or 3A+B3-) 

ionic bonds as a function of elongation of the ionic bond and Morse potential constant, 

respectively. These simulation results reveal that the quantities of electric charges of the 

cationic or anionic groups have critical roles in determining the mechanical energy to resist to 

the electrostatic force, e.g., the mechanical energy is increased with an increase in the 

quantities of electric charges. It should be noted that the electrostatic force of the A2+B2- bond 

is the same with that of the A2+2B- or 2A+B2- bond under the axial force while the repulsive 

forces of the B- and B- groups in A2+2B- bond (or A+ and   A+ groups in 2A+B2- bond) are 

different from that of A2+B2- bond. This is because the vertically repulsive force has no 
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apparent effect on the elongation of the bond along the axial direction.  

[Figure 6] 

4. Modelling of the mechanical performance of double-network polymer composite 

For the DN polymer that is incorporated of a covalent network (made from m  covalent 

bonds) and an ionic network (made from n  ionic bonds), the mechanical energy (W ) of the 

tensile force applied on the polymer is resulted from both networks, i.e.,  

    

22
2 0

02 2 2 2

0

1 2exp( ) exp( 2 )
2

2
ln ln     where   and 

m i

i e i

m c c

e

W mW nW

W W D

P
W D x x D x

RR
W k e R r x R r

R r R r

  



 


 



      

    

            
     

    (14) 

where mW  and iW  are the mechanical energy values for the covalent network and ionic 

network, respectively; cD  and iD  are the dissociation energy values of the covalent network 

and ionic network, respectively. When the Morse potential function is initially introduced, the 

vibration of the polymer chain has not been considered. Therefore, the effect of entropic 

change on the mechanical energy has not been considered. For the thermodynamic of 

polymer, the entropy function should be considered as the vibrational energy plays a critical 

role in determining the free-energy (W U TS pV   ). However, the stretching ( ) of the 

polymer is generally applied to describe the entropy change for the rubbery polymer. Similar 

to the rubbery network polymer, for the double-network polymer, the bond is stretched when 

the force is applied, and the bond will be recovered with the external force removed. 

According to the Flory-Huggins theory [27], the free-energy of a stretched network of 

polymers can be written as  23
1 2log

2
sW NkT     , where N  is the number of chains, 

k  is the Boltzmann’s constant and T  is the temperature.  
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The mechanical energy of the tensile force can be rewritten as,  

    

22
2 0

2 2 2 2

0

1 2exp( ) exp( 2 )
2

       ln ln

c c

i

P
W m D x x D x

RR
n k e D

R r R r

  
 

       
 

   
       

    

            (15) 

The values of cD  and iD  are constants when the covalent and ionic networks are fixed. It is 

assumed that iD ≈0 (e.g., energy dissipation is not considered in this part). Therefore, the 

following expression is obtained in this study, 

    

22
2 0

2 2 2 2

0

1 2exp( ) exp( 2 )
2

       ln ln

c

P
W m D x x x

RR
n k e

R r R r

  
 

        
 

   
      

    

              (16) 

It is assumed that r =10-10m for both the covalent bond and ionic bond, and n m= =1010, 

1.25×1010, 1.6×1010 or 2×1010. If the covalent network has not been broken, its mechanical 

performance could be characterized by assuming it is a covalent bond. Whereas if the ionic 

network is broken under the mechanical force, its bond number is assumed to be same value 

of the Morse potential constant, cD = 
1

AN
 301kJ/mol=5×10-19J ( AN =6.02×1023, is the 

Avogadro constant) [33], k =9×109N･m2/C2, e =1.6×10-19C, P =0.4. Thus, equation (16) 

can be further modified as, 

    

22
2 0

2 2 2 2

0

1 2exp( ) exp( 2 )
2

       ln ln

c

P
W D x x x

RR
k e

R r R r

  



 
       

 

   
       

    

              (17) 

[Figure 7] 

Equation (17) presents a constitutive relationship between the mechanical energy as a 

function of the bond elongation x  (it is assumed that the bond elongation of covalent is 
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same with that of the ionic bond, e.g.,  c ix x x ) as shown in Figures 7(a), 7(b), 7(c) and 7(d) 

at the given ionic bond numbers of  =1010, 1.25×1010, 1.6×1010 or 2×1010, respectively. 

Both the polar and deformation mechanical energy values are gradually increased with the 

increase in the bond elongation. The simulation results confirm that the polar 

mechanical-energy also plays an essential role to resist the externally mechanical loading, 

and this polar mechanical-energy is resulted from the electrostatic interactions of the cationic 

group with the anionic groups. If the mechanically induced scission of the ionic bonds 

happens, the cationic or anionic groups start to resist the externally mechanical loading 

through changes of their electrostatic forces. Therefore, the mechanical energy that is 

necessary to deform the covalent bonds and resist the electrostatic forces of the ionic bonds 

becomes a function of the ionic bond elongation as shown in Figure 8(a). With the bond 

number increased from  =1010, 1.25×1010, 1.6×1010 to 2×1010, more mechanical energy is 

needed to stretch the ionic bonds to a given bond elongation. While the bond number function 

( ) has no apparent effect on the mechanical energy applied on the covalent bond, of which 

the bond elongation is kept a constant under the stretching force. Furthermore, the effect of 

the bond number on the mechanical energy applied on the ionic bonds has been studied and 

characterized, with the results shown in Figure 8(b). It is found that much more mechanical 

energy should be applied on the ionic bonds with an increase in the bond number from 

 =1010, 1.25×1010, 1.6×1010 to 2×1010, which is resulted from the increased elongation of 

the ionic bonds (x ).  

[Figure 8] 

Furthermore, Figure 9 presents changes of the mechanical energy as a function of the 
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covalent (or ionic) bond elongation at given ionic bond numbers of  =1010,  =1.25×1010, 

 =1.6×1010 and  =2×1010. Simulation result reveals that the mechanical energy used to 

resist the electrostatic force from the ionic bonds is increased with the increase of bond 

numbers. It well agrees with the previously reported studies that the free energy is much 

higher for the polymer with a higher concentration of the ions [28]. Therefore, the amount of 

the polar mechanical-energy becomes larger as more mechanical energy is applied on the 

covalent and ionic bonds, thus resulting in an increased value of the polar mechanical-energy 

and large divergence of the deformation mechanical-energy. This simulation result helps to 

separate the effect of the mechanical energy applied on the ionic bonds from that on the 

covalent bond. However, it is necessary to consider the electrostatic force resulted from ionic 

bond scission in the modeling and simulation of the DN polymers.  

[Figure 9] 

By comparing equations (7) with (17), the deviatoric part of the stress function can be 

described as,  
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             (18) 

where mS  and iS  are the forces per unit area for the covalent and ionic bonds, respectively.   

c is the Morse potential constant of the covalent bond.  

In the double-network polymer composite, it is generally assumed that mechanically 

induced scission will happen in the ionic bonds at the beginning state of deformation to resist 

the external mechanical force. Here, it is assumed that the dissociation energy of the ionic 

network has no apparent effect on the stress function of the polymer. Accordingly, equation 
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(18) could be expressed as follows:  
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    (19) 

where S  is the force per unit area of the double-network polymer composite, and  i  is the 

Morse potential constant of the ionic network. After the ionic bond scission is induced by the 

external force, the electrostatic force begins to influence the stress function. According to 

results obtained from equation (19), Figure 10 plots the constitutive curves of the forces as a 

function of elongation of covalent (or ionic) bond at the given Morse potential constants of 

 i c =1010,  i c =1.25×1010,  i c =1.6×1010 and  i c =2×1010. Results show that 

the force applied on the double-network polymer composite is sharply increased when the 

displacements over the initial distance of the bonds are decreased from x =2.0×10-10m, 

x =1.6×10-10m, x =1.125×10-10m and x =1.0×10-10m, respectively, which is mainly resulted 

from combined actions from both the mechanically induced scission and electrostatic force of 

the ionic bonds. A large amount of the mechanical energy is dissipated for breaking the ionic 

bonds, whereas there is no apparent change in the bond elongation. That is to say, a large 

amount of the mechanical energy is transformed into the chemical energy for the ionic bond 

scission. 

[Figure 10] 

However, it is necessary to characterize the mechanical behavior of the ionic bonds before 

they are mechanically deformed to induce scission. Here it is assumed that the mechanical 
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behavior of the ionic bonds can also be described using the Morse potential expression before 

they are broken, i.e.,  

 
 1 exp( 2 ) 2exp( )i i

i

U x
x x

D
                          (20) 

where iD  is the dissociation energy of the interatomic ionic bond without any vibrations,  i  

is the coefficient in the Morse expression ( i  is also assumed to the bond number of the 

ionic network) [34] and x  is the distance of the interatomic bond. Before the ionic bonds are 

broken, the electrostatic force of the ionic bonds is a sum of that of each ionic bond due to 

their homogeneous and uniform mechanical property. In the case of the breaking of ionic 

bonds, an equilibrium equation can be obtained according to the Morse potential equation and 

electrostatic force equation as following,  
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 (21) 

Thus, the dissociation energy function of the ionic bond could be expressed as,  
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When there is mechanically induced scission in the ionic bond, iP =1. 

According to 


m
2
i

iF D , the maximum force under a static elastic tension of the ionic bond 

is presented as, 

2 2 2

0 0 0

m

0 0

2

2 2
2exp( ) 2exp( 2 )

2

i

i i
i

i
i i

e e e
k

R R r R r
F D

P
x x


 

 

 
    

    
 

    
 

           (23) 



 

18 

 

Equations (22) and (23) show the constitutive relationships between the dissociation energy 

( iD ) and maximum force ( mF ) for the ionic bonds. As the bond number is gradually increased, 

both the dissociation energy ( iD ) and maximum force ( mF ) of the interatomic ionic bond are 

increased as shown in Figures 11(a) and 11(b). The simulation results reveal that both the 

dissociation energy and maximum force under a static elastic tension are essentially 

determined by the bond number of the ionic network, e.g., higher stress and mechanical 

energy are needed to apply on the ionic network for the bond dissociation as more ionic 

bonds are incorporated into the network. It is well known that the active energy of the 

polymer chain is increased with the increase of monomer numbers according to the 

thermodynamics of polymers [34]. With an increase in the active energy, a high mechanical 

energy should be provided in order to maintain a constant stretching ratio. The working 

mechanism of the monomer number on the active energy is similar to that of bond number on 

the mechanical energy of the ionic network.  

[Figure 11] 

However, there are mechanically induced scissions of the ionic bonds generated to resist 

the external mechanical force. It is difficult to characterize the mechanical behavior of the 

ionic bonds in the DN polymer during their stretching, which would be similar to that of the 

covalent bonds. Therefore, the Morse potential function is again used to depict the 

mechanically induced stretching of the ionic bonds before their dissociation. Here, the 

equation (20) can be expressed as follows,  
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 (24) 

According to equation (24), the covalent bonds will be stretched to resist the external 

mechanical force according to the Morse potential function. It reveals that the ionic bonds are 

stretched to resist the external mechanical force, and then the electrostatic forces are activated 

before and after they are broken. Therefore, the constitutive relationship between the force 

per unit area and displacement over the initial distance could be able to describe the 

mechanochemical behavior of the DN polymer. Figure 12 plots the simulation curves for the 

mechanical force as a function of the covalent (or ionic) bond elongation at different Morse 

potential constants of  i c =1010,  i c =1.25×1010,  i c =1.6×1010 and 

 i c =2×1010. It is revealed that there is a distinct difference of the mechanical forces for 

the covalent network and DN as shown in Figures 12(a) and 12(c). The maximum differences 

of the mechanical forces reach to 56.67%, 67.54%, 80.52% and 83.38%, respectively, at 

different Morse potential constants of  i c =1010,  i c =1.25×1010,  i c =1.6×1010 

and  i c =2×1010 as presented in Figures 12(b) and 12(d). These simulation results clearly 

show that the mechanical force applied on the ionic bonds is significantly increased with an 

increase in the bond number. Therefore, large differences of the mechanical forces have been 

found between the covalent and DN network.  

[Figure 12] 
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5. Verification approaches of theoretical results  

From an experimental perspective, measurement of the elongation of a covalent bond x  

is quite challenging, owing to the nature of the resonant frequency of vibration. At the same 

time, the mechanical failure of the bulk material is rather a complex process, and the number 

of bonds rupturing at a given time, their angular distribution, and the role of shear forces and 

friction are difficult to be assessed. Therefore, it remains a great challenge to correlate the 

mechanical properties determined from the bulk material to those of the individual chemical 

bonds. Newly developed single-molecule techniques generally based on the atomic force 

microscope (AFM) [35] have been developed for the measurement of the mechanical 

properties of individual molecule and bond directly. Owing to the simplicity of this approach, 

a vast number of natural and synthetic molecules and their bonds can be studied using a 

single-molecule force spectroscope.  

The AFM was developed to directly measure the force to generate of a chemical bond [36], 

and also generate atomically resolved images of surfaces with characteristic features and 

defects [37-39]. These truly atomic-scale contrast images are resulted from the short range 

chemical interactions between an atomically sharp AFM tip and the nearest atoms on the 

surface of the sample. In principle, it maps the potential of chemical bonding between the 

foremost atoms on an AFM tip. The separation of the tip and substrate can be employed for 

the elongation of the chemical bonds. Therefore, the modeling results could be verified based 

on the experimental ones from the AFM measurement.  

The force-distance and interaction energy-distance relations of a single covalent bond are 

initially measured by the AFM, respectively. To determine the elongation of a covalent bond 
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over which only the AFM forces are acting, sphere-plane model or first-principles calculation 

is necessary to be used to fit the experimental data. Furthermore, the energy-force relation for 

the interaction is also calculated from the force-distance and interaction energy-distance 

relations of a single covalent bond. According to the experimental data determined by the 

AFM, the simulation results of the mechanochemically induced covalent bond could be 

compared for verification as shown in Figure 13. Figure 13(a) plots the numerical results for 

the mechanical energy as a function of the elongation ( x ), and the experimental data are also 

plotted for comparisons. It is found that the difference of the simulation and experimental 

results is within 80%, as revealed in Figure 13(b). Meanwhile, Figure 13(c) plots the 

numerical results for the stress as a function of the elongation ( x ). and the difference of the 

simulation and experimental results is within 50%, as revealed in Figure 13(d). It is found 

that the theoretical simulation results are in good agreements with the experimental ones. 

This shows that the modelling results could be verified by the AFM results.  

Mechanically induced scission of covalent bonds has previously been experimental 

investigated using AFM analysis [40]. Infrared (IR) spectroscopy was generally used for the 

investigation of polymer degradation. The infrared method was also used for the 

measurements of terminal groups formed as a result of macromolecular degradation in 

specimens fractured under uniaxial tension [41]. The spectrometer recorded the difference in 

absorption of the undeformed and fractured specimens (    0D D D , where is 0D  the 

dissociation energy of undeformed bond, D  the dissociation energy of fractured bond). The 

scission of the ionic bonds can be determined using the IR spectroscopy as well. However, 

the experimental measurement of the scission of ionic bond has never been reported using the 
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IR measurement. After the rupture of the ionic bond, the AFM method can then be employed 

to measure the force and elongation of the ruptured ionic bond. In this way, the modeling 

results may potentially be validated by the experimental data in the future work. 

6. Conclusion  

In this study, we proposed a molecular mechanics framework to study the mechanically 

induced stretching and bond scission of the double-network polymer composite based on the 

Morse potential function model and electrostatic force equations. We have demonstrated that 

the proposed constitutive framework is able to predict mechanical and chemical transitions 

and their mechanochemical behavior of the double-network polymer composite. This 

proposed constitutive framework provides an effective approach to quantitatively analyze the 

dependence of mechanochemical behavior on the applied stress, covalent (or ionic) bond 

elongation, Morse potential constant and bond numbers of the double-network. The working 

mechanism in the mechanochemically induced bond stretching and scission has been 

identified and the constitutive relationship is obtained. The contribution of the ionic bonds to 

the mechanical properties has been systemically studied, as the ionic bonds resist the applied 

stress by means of mechanical stretching, bond dissociation and electrostatic interaction. 

Furthermore, the mechanochemical behaviors of several classical interatomic interaction 

types (A+B-, A2+B2-/A2+2B-/2A+B2- and A3+B3-/A3+3B-/3A+B3-) of ionic bonds have been 

investigated. The electrostatic interaction of the A2+2B- (or 2A+B2-) bond is same with that of 

the A2+B2- bond along the axial direction. While the electrostatic interaction of the A3+3B- (or 

3A+B3-) bond is same with that of the A3+B3- bond. This study is expected to provide a 

powerful tool to explore the working mechanism in mechanochemical behaviors of the 
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double-network polymer composites. 
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Figure caption  

Figure 1. A schematic illustration for the distance of interatomic covalent bond ( x ) under a 

force per unit area ( Uf ) applied on the bond. While the covalent chain is stretched with the 

macro-force per unit area F . (a) A covalent bond is unstretched with the force per unit area 

Uf =0. (b) The covalent bond is stretched with the force per unit area Uf >0, resulting in the 

distance of interatomic covalent bond increased from x  to x x .  

Figure 2. Numerical results of the normalized mechanical energy ( m cW D ) as a function of 

elongation of the covalent bond ( x ). (a) Simulation curves for the normalized mechanical 

energy at different Morse coefficients of  =1010, 2×1010, 3×1010, 4×1010 and 5×1010. (b) 

Simulation curves for the normalized mechanical energy at different dimensionless forces of 

P =0, 0.2, 0.4, 0.6 and 0.8. 

Figure 3. Numerical results of the normalized stress ( cS D ) as a function of bond elongation 

( x ) of the covalent bond. (a) Simulation curves for the normalized stress at different Morse 

coefficients of  =1010, 2×1010, 3×1010, 4×1010 or 5×1010. (b) Simulation curves for the 

normalized stress at different dimensionless forces of P =0, 0.2, 0.4, 0.6 and 0.8. 

Figure 4. Numerical results of the mechanical energy ( 2
eW ke ) for electrostatic force as a 

function of interatomic distance of the scission bond ( x ) and Morse potential constant ( i ) 

for the ionic bond. (a) Simulation curves for the mechanical energy ( 2
eW ke ) for electrostatic 

force at a given constant of  ir =4, 5, 8 and 10. (b) Simulation curves for the mechanical 

energy ( 2
eW ke ) for electrostatic force at a given constant of R r =1.01, 1.05, 1.2 and 2.0.  

Figure 5. (a) The electrostatic interaction for the A2+2B- (or 2A+B2-) ionic bond. (b) The 

electrostatic interaction for the A3+3B- (or 3A+B3-) ionic bond. 
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Figure 6. Numerical results of the mechanical energy for electrostatic force of the A2+B2- 

(A2+2B- or 2A+B2-) and A3+B3- (A3+3B- or 3A+B3-) ionic bond. (a) Simulation results of the 

mechanical energy ( 2
eW ke ) as a function of elongation of the ionic bond ( x ). (b) Simulation 

results of the mechanical energy ( 2
eW ke ) as a function of Morse potential constant ( i ). 

Figure 7. Numerical results of the mechanical energy (W ) and deformation mechanical 

energy ( mW ) as a function of the covalent/ionic bond elongation (  c ix x x , where cx  and   

ix  are the elongation of the covalent bond and ionic bond, respectively.). At a given Morse 

potential constant of (a) =1010. (b)  =1.25×1010. (c)  =1.6×1010. (d)  =2×1010. 

Figure 8. (a) Numerical results of the deformation mechanical energy ( mW ) against 

elongation of the covalent/ionic bond ( x ) at given Morse potential constants of  =1010, 

 =1.25×1010,  =1.6×1010 and  =2×1010. (b) Numerical results of the polar mechanical 

energy ( eW ) against elongation of the covalent/ionic bond ( x ) at given Morse potential 

constants of  =1010,  =1.25×1010,  =1.6×1010 to  =2×1010.  

Figure 9. A divergence of the mechanical energy for deformation of the covalent and ionic 

bonds as a function of the elongation of covalent (or ionic) bond at given ionic bond numbers 

of  =1010,  =1.25×1010,  =1.6×1010 and  =2×1010. 

Figure 10. The constitutive relationship of the mechanical stress as a function of the 

elongation of covalent (or ionic) bond at a given Morse potential constant of (a)  i c =1010 

and  i c =1.25×1010. (b)  i c =1.6×1010 and  i c =2×1010. 

Figure 11. (a) The constitutive relationship of the dissociation energy of the interatomic ionic 

bond ( iD ) as a function of the Morse coefficient  i  ( i  is also assumed to the bond number 

of the ionic network). (b) The constitutive relationship of the maximum force under static 
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elastic tension of the ionic bond ( iP =1 and U mf F ) as a function of the Morse coefficient  i . 

Figure 12. The constitutive relationship of the mechanical stress as a function of the covalent 

(or ionic) bond elongation. (a) At different Morse potential constants of  i c =1010 and 

 i c =1.25×1010. (b) Difference of the deformation force for the covalent network in 

comparison with that of the double-network at various Morse potential constants of 

 i c =1010 and  i c =1.25×1010. (c) At different Morse potential constants of 

 i c =1.6×1010 and  i c =2×1010. (d) Changes of the deformation force for the covalent 

network in comparison with that of the double-network at various Morse potential constants 

of  i c =1.6×1010 and  i c =2×1010. 

Figure 13. (a) The simulation curves of energy-elongation contrast with the experiment data 

[35]. (b) Divergence of simulation and experimental results of energy. (c) The simulation 

curves of stress-elongation contrast with the experiment data [40]. (d) Divergence of 

simulation and experimental results of stress. The dot implicates the experiment data.  
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Figure 1. A schematic illustration for the distance of interatomic covalent bond ( x ) under a 

force per unit area ( Uf ) applied on the bond. While the covalent chain is stretched with the 

macro-force per unit area F . (a) A covalent bond is unstretched with the force per unit area 

Uf =0. (b) The covalent bond is stretched with the force per unit area Uf >0, resulting in the 

distance of interatomic covalent bond increased from x  to x x .  
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Figure 2. Numerical results of the normalized mechanical energy ( m cW D ) as a function of 

elongation of the covalent bond ( x ). (a) Simulation curves for the normalized mechanical 

energy at different Morse coefficients of  =1010, 2×1010, 3×1010, 4×1010 and 5×1010. (b) 

Simulation curves for the normalized mechanical energy at different dimensionless forces of 

P =0, 0.2, 0.4, 0.6 and 0.8. 
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Figure 3. Numerical results of the normalized stress ( cS D ) as a function of bond elongation 

( x ) of the covalent bond. (a) Simulation curves for the normalized stress at different Morse 

coefficients of  =1010, 2×1010, 3×1010, 4×1010 or 5×1010. (b) Simulation curves for the 

normalized stress at different dimensionless forces of P =0, 0.2, 0.4, 0.6 and 0.8. 
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Figure 4. Numerical results of the mechanical energy ( 2
eW ke ) for electrostatic force as a 

function of interatomic distance of the scission bond ( x ) and Morse potential constant ( i ) 

for the ionic bond. (a) Simulation curves for the mechanical energy ( 2
eW ke ) for electrostatic 

force at a given constant of  ir =4, 5, 8 and 10. (b) Simulation curves for the mechanical 

energy ( 2
eW ke ) for electrostatic force at a given constant of R r =1.01, 1.05, 1.2 and 2.0. 
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Figure 5. (a) The electrostatic interaction for the A2+2B- (or 2A+B2-) ionic bond. (b) The 

electrostatic interaction for the A3+3B- (or 3A+B3-) ionic bond. 
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Figure 6. Numerical results of the mechanical energy for electrostatic force of the A2+B2- 

(A2+2B- or 2A+B2-) and A3+B3- (A3+3B- or 3A+B3-) ionic bond. (a) Simulation results of the 

mechanical energy ( 2
eW ke ) as a function of elongation of the ionic bond ( x ). (b) Simulation 

results of the mechanical energy ( 2
eW ke ) as a function of Morse potential constant ( i ). 
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Figure 7. Numerical results of the mechanical energy (W ) and deformation mechanical 

energy ( mW ) as a function of the covalent/ionic bond elongation (  c ix x x , where cx  and   

ix  are the elongation of the covalent bond and ionic bond, respectively.). At a given Morse 

potential constant of (a) =1010. (b)  =1.25×1010. (c)  =1.6×1010. (d)  =2×1010. 
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Figure 8. (a) Numerical results of the deformation mechanical energy ( mW ) against 

elongation of the covalent/ionic bond ( x ) at given Morse potential constants of  =1010, 

 =1.25×1010,  =1.6×1010 and  =2×1010. (b) Numerical results of the polar mechanical 

energy ( eW ) against elongation of the covalent/ionic bond ( x ) at given Morse potential 

constants of  =1010,  =1.25×1010,  =1.6×1010 to  =2×1010.  
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Figure 9. A divergence of the mechanical energy for deformation of the covalent and ionic 

bonds as a function of the elongation of covalent (or ionic) bond at given ionic bond numbers 

of  =1010,  =1.25×1010,  =1.6×1010 and  =2×1010. 
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Figure 10. The constitutive relationship of the mechanical stress as a function of the 

elongation of covalent (or ionic) bond at a given Morse potential constant of (a)  i c =1010 

and  i c =1.25×1010. (b)  i c =1.6×1010 and  i c =2×1010. 
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Figure 11. (a) The constitutive relationship of the dissociation energy of the interatomic ionic 

bond ( iD ) as a function of the Morse coefficient  i  ( i  is also assumed to the bond number 

of the ionic network). (b) The constitutive relationship of the maximum force under static 

elastic tension of the ionic bond ( iP =1 and U mf F ) as a function of the Morse coefficient  i . 
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Figure 12. The constitutive relationship of the mechanical stress as a function of the covalent 

(or ionic) bond elongation. (a) At different Morse potential constants of  i c =1010 and 

 i c =1.25×1010. (b) Difference of the deformation force for the covalent network in 

comparison with that of the double-network at various Morse potential constants of 

 i c =1010 and  i c =1.25×1010. (c) At different Morse potential constants of 

 i c =1.6×1010 and  i c =2×1010. (d) Changes of the deformation force for the covalent 

network in comparison with that of the double-network at various Morse potential constants 

of  i c =1.6×1010 and  i c =2×1010. 
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Figure 13. (a) The simulation curves of energy-elongation contrast with the experiment data 

[35]. (b) Divergence of simulation and experimental results of energy. (c) The simulation 

curves of stress-elongation contrast with the experiment data [40]. (d) Divergence of 

simulation and experimental results of stress. The dot implicates the experiment data.  

 


