7,033 research outputs found

    Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI

    Full text link
    We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and the patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov Chain Monte Carlo (MCMC) for the Bayesian model, and use the alternating direction method of multipliers (ADMM) for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods

    GRB 111005A at Z = 0.0133 and the Prospect of Establishing Long-short GRB/GW Association

    Full text link
    GRB 111005A, one long duration gamma-ray burst (GRB) occurred within a metal-rich environment that lacks massive stars with MZAMS15MM_{\rm ZAMS}\geq 15M_\odot, is not coincident with supernova emission down to stringent limit and thus should be classified as a "long-short" GRB (lsGRB; also known as SN-less long GRB or hybrid GRB), like GRB 060505 and GRB 060614. In this work we show that in the neutron star merger model, the non-detection of the optical/infrared emission of GRB 111005A requires a sub-relativistic neutron-rich ejecta with the mass of 0.01 M\leq 0.01~M_\odot, (significantly) less massive than that of GRB 130603B, GRB 060614 and GRB 050709. The lsGRBs are found to have a high rate density and the neutron star merger origin model can be unambiguously tested by the joint observations of the second generation gravitational wave (GW) detectors and the full-sky gamma-ray monitors such as Fermi-GBM and the proposing GECAM. If no lsGRB/GW association is observed in 2020s, alternative scenarios have to be systematically investigated. With the detailed environmental information achievable for the very-nearby events, a novel kind of merger or explosion origin may be identified.Comment: Published in ApJ

    Modeling Multi-wavelength Pulse Profiles of Millisecond Pulsar PSR B1821-24

    Full text link
    PSR B1821-24 is a solitary millisecond pulsar (MSP) which radiates multi-wavelength pulsed photons. It has complex radio, X-ray and γ\gamma-ray pulse profiles with distinct peak phase-separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with suitable magnetic inclination angle (α=40\alpha=40^\circ) and viewing angle (ζ=75\zeta=75^\circ), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak is originated from the core gap region at high altitudes, and the other two radio peaks are originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ\gamma-ray wavebands are fundamentally originated from annular gap region, while the γ\gamma-ray emission generated from the core gap region contributes somewhat to the first γ\gamma-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821-24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.Comment: Accepted for publication in Ap

    Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation.

    Get PDF
    Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), represent potentially unlimited cell sources for clinical applications. Previous studies have suggested that hPSCs may benefit from immune privilege and limited immunogenicity, as reflected by the reduced expression of major histocompatibility complex class-related molecules. Here we investigated the global immune-related gene expression profiles of human ESCs, hiPSCs and somatic cells and identified candidate immune-related genes that may alter their immunogenicity. The expression levels of global immune-related genes were determined by comparing undifferentiated and differentiated stem cells and three types of human somatic cells: dermal papilla cells, ovarian granulosa cells and foreskin fibroblast cells. We identified the differentially expressed genes CD24, GATA3, PROM1, THBS2, LY96, IFIT3, CXCR4, IL1R1, FGFR3, IDO1 and KDR, which overlapped with selected immune-related gene lists. In further analyses, mammalian target of rapamycin complex (mTOR) signaling was investigated in the differentiated stem cells following treatment with rapamycin and lentiviral transduction with specific short-hairpin RNAs. We found that the inhibition of mTOR signal pathways significantly downregulated the immunogenicity of differentiated stem cells. We also tested the immune responses induced in differentiated stem cells by mixed lymphocyte reactions. We found that CD24- and GATA3-deficient differentiated stem cells including neural lineage cells had limited abilities to activate human lymphocytes. By analyzing the transcriptome signature of immune-related genes, we observed a tendency of the hPSCs to differentiate toward an immune cell phenotype. Taken together, these data identify candidate immune-related genes that might constitute valuable targets for clinical applications

    Correlation among Human Resource Flexibility Strategy, Organizational Citizenship Behavior and Organizational Performance in Ecotourism Industry

    Get PDF
    To satisfy the demands for production peak, reduce personnel costs for labor, limit the increase of employees in enterprises, and focus on corporate specialty to develop the competitive advantage, enterprises would generally apply human resource flexibility strategy to achieve the objectives. The practice of human resource flexibility strategy would change work-related characteristics; besides, the effect of the system on employees would decide the effort, absenteeism, or turnover. Aiming at supervisors and employees in ecotourism, as the research objects, a total of 500 copies of questionnaire are distributed, and 351 valid copies are retrieved, with the retrieval rate of 70%. The research results reveal positive and significant effects of 1. human resource flexibility strategy on organizational citizenship behavior, 2. organizational citizenship behavior on organizational performance, and 3. human resource flexibility strategy on organizational performance. According to the results, suggestions are eventually proposed, expecting to provide essential assistance for the human resource flexibility strategy in ecotourism and assist in the sustainable development
    corecore