2 research outputs found

    Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties

    No full text
    Copper (Cu) nanoparticles possess unusual electrical, thermal, and optical properties. However, applications of these materials are often limited by their tendency to oxidize. We prepared Cu nanoparticles by a simple polyol method, with a good control over the particle size. The reaction required no inert atmosphere or surfactant agents. The as-prepared Cu nanoparticles showed good resistance to oxidation in solution. These Cu nanoparticles were then incorporated into a biocompatible polysaccharide hydrogel, which further stabilized the nanoparticles. The hybrid hydrogel exhibited a rapid self-healing ability. Because of the excellent photothermal conversion properties of the embedded Cu nanoparticles, the hybrid hydrogel showed rapid temperature elevation under laser irradiation. The hybrid hydrogel showed limited cytotoxicity; however, under laser irradiation the hydrogel displayed antibacterial properties owing to the heating effects. This study demonstrates that our hybrid hydrogel may have applications in biomedical fields and photothermal therapy

    Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells

    No full text
    In this work, we report the facile synthesis of functional core–shell structured nanoparticles with fluorescence enhancement, which show specific targeting of cancer cells. Biopolymer poly-l-lysine was used to coat the silver core with various shell thicknesses. Then, the nanoparticles were functionalized with folic acid as a targeting agent for folic acid receptor. The metal-enhanced fluorescence effect was observed when the fluorophore (5-(and-6)-carboxyfluorescein-succinimidyl ester) was conjugated to the modified nanoparticle surface. Cellular imaging assay of the nanoparticles in folic acid receptor-positive cancer cells showed their excellent biocompatibility and selectivity. The as-prepared functional nanoparticles demonstrate the efficiency of the metal-enhanced fluorescence effect and provide an alternative approach for the cellular imaging and targeting of cancer cells
    corecore