29,209 research outputs found

    SU(5) Heterotic Standard Model Bundles

    Full text link
    We construct a class of stable SU(5) bundles on an elliptically fibered Calabi-Yau threefold with two sections, a variant of the ordinary Weierstrass fibration, which admits a free involution. The bundles are invariant under the involution, solve the topological constraint imposed by the heterotic anomaly equation and give three generations of Standard Model fermions after symmetry breaking by Wilson lines of the intermediate SU(5) GUT-group to the Standard Model gauge group. Among the solutions we find some which can be perturbed to solutions of the Strominger system. Thus these solutions provide a step toward the construction of phenomenologically realistic heterotic flux compactifications via non-Kahler deformations of Calabi-Yau geometries with bundles. This particular class of solutions involves a rank two hidden sector bundle and does not require background fivebranes for anomaly cancellation.Comment: 17 page

    Measurable nonlocal effect of bipartite system during a local cyclic evolution of its subsystem

    Full text link
    In this letter, a nonlocal effect for a bipartite system which is induced by a local cyclic evolution of one of its subsystem is suggested. This effect vanishes when the system is at a disentangled pure state but can be observed for some disentangled mixed states. As a paradigm, we study the effect for the system of two qubits in detail. It is interesting that the effect is directly related to the degree of entanglement for pure state of qubit pairs. Furthermore, we suggest a Bell-type experiment to measure this nonlocal effect for qubit pairs.Comment: 5 pages, 2 figure

    csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation

    Get PDF
    published_or_final_versio

    Schmidt number of pure bi-partite entangled states and methods of its calculation

    Full text link
    An entanglement measure for pure-state continuous-variable bi-partite problem, the Schmidt number, is analytically calculated for one simple model of atom-field scattering.Comment: 3 pages, 1 figure; based on the poster presentation reported on the 11th International Conference on Quantum Optics (ICQO'2006, Minsk, May 26 -- 31, 2006), to be published in special issue of Optics and Spectroscop

    Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency

    No full text
    We report on a planar metamaterial, the resonant transmission frequency of which does not depend on the polarization and angle of incidence of electromagnetic waves. The resonance results from the excitation of high-Q antisymmetric trapped current mode and shows sharp phase dispersion characteristic to Fano-type resonances of the electromagnetically induced transparency phenomenon

    Topological properties of superconducting junctions

    Full text link
    Motivated by recent developments in the field of one-dimensional topological superconductors, we investigate the topological properties of s-matrix of generic superconducting junctions where dimension should not play any role. We argue that for a finite junction the s-matrix is always topologically trivial. We resolve an apparent contradiction with the previous results by taking into account the low-energy resonant poles of s-matrix. Thus no common topological transition occur in a finite junction. We reveal a transition of a different kind that concerns the configuration of the resonant poles

    Influence of the trap shape on the superfluid-Mott transition in ultracold atomic gases

    Full text link
    The coexistence of superfluid and Mott insulator, due to the quadratic confinement potential in current optical lattice experiments, makes the accurate detection of the superfluid-Mott transition difficult. Studying alternative trapping potentials which are experimentally realizable and have a flatter center, we find that the transition can be better resolved, but at the cost of a more difficult tuning of the particle filling. When mapping out the phase diagram using local probes and the local density approximation we find that the smoother gradient of the parabolic trap is advantageous.Comment: 5 pages, 6 figure
    corecore