172 research outputs found

    Practical Distributed Control for VTOL UAVs to Pass a Tunnel

    Full text link
    Unmanned Aerial Vehicles (UAVs) are now becoming increasingly accessible to amateur and commercial users alike. An air traffic management (ATM) system is needed to help ensure that this newest entrant into the skies does not collide with others. In an ATM, airspace can be composed of airways, intersections and nodes. In this paper, for simplicity, distributed coordinating the motions of Vertical TakeOff and Landing (VTOL) UAVs to pass an airway is focused. This is formulated as a tunnel passing problem, which includes passing a tunnel, inter-agent collision avoidance and keeping within the tunnel. Lyapunov-like functions are designed elaborately, and formal analysis based on invariant set theorem is made to show that all UAVs can pass the tunnel without getting trapped, avoid collision and keep within the tunnel. What is more, by the proposed distributed control, a VTOL UAV can keep away from another VTOL UAV or return back to the tunnel as soon as possible, once it enters into the safety area of another or has a collision with the tunnel during it is passing the tunnel. Simulations and experiments are carried out to show the effectiveness of the proposed method and the comparison with other methods

    Extensive tRNA gene changes in synthetic Brassica napus

    Get PDF
    Allopolyploidization, where two species come together to form a new species, plays a major role in speciation and genome evolution. Transfer RNAs (abbreviated tRNA) are typically 73-94 nucleotides in length, and are indispensable in protein synthesis, transferring amino acids to the cell protein synthesis machinery (ribosome). To date, the regularity and function of tRNA gene sequence variation during the process of allopolyploidization have not been well understood. In this study, the inter-tRNA gene corresponding to tRNA amplification polymorphism method was used to detect changes in tRNA gene sequences in the progeny of interspecific hybrids between Brassica rapa and B. oleracea, mimicking the original B. napus (canola) species formation event. Cluster analysis showed that tRNA gene variation during allopolyploidization did not appear to have a genotypic basis. Significant variation occurred in the early generations of synthetic B. napus (F and F generations), but fewer alterations were observed in the later generation (F). The variation-prone tRNA genes tended to be located in AT-rich regions. BlastN analysis of novel tRNA gene variants against a Brassica genome sequence database showed that the variation of these tRNA-gene-associated sequences in allopolyploidization might result in variation of gene structure and function, e.g., metabolic process and transport

    Regularities in simple sequence repeat variations induced by a cross of resynthesized Brassica napus and natural Brassica napus

    Get PDF
    Interspecific hybridization can induce extensive variation in genome sequences, including simple sequence repeat (SSR) regions. To determine the characteristics of SSR variation induced by interspecific hybridization and the possible effect of SSR variation on gene function, we constructed a Brassica napus doubled-haploid (DH) population from a cross between natural B. napus and resynthesized B. napus (B. oleracea Ă— B. rapa) and identified, located, sequenced and functionally annotated SSR variants.The results showed that novel SSR variants were generated in the F generation and maintained in the introgressed DH population. Elimination of sequences carrying SSRs also occurred in the F hybrids, with three times as many sequences lost in the introgressed DH population compared to in the F hybrids, probably due to non-homologous recombination. The degree of SSR variation observed depended primarily on the number of SSR repeats and secondarily on the nucleotide composition of the SSR motifs.In the introgressed DH population, many genes containing SSRs exhibited frameshift mutations (62.5%) due to the expansion or contraction of the SSR motifs following deletion deletion (25%) or insertion (12.5%) mutations.Most genes harboring SSR variants were associated with vital metabolic processes, such as protein or DNA metabolic processes. The SSR variation induced by interspecific hybridization reflects an intrinsic property of species adaptability post-hybridization through variation. This study is beneficial to understanding the origin of SSRs and the effects of SSR mutation on polyploid genomes

    Impacts of Climatic Fluctuations and Vegetation Greening on Regional Hydrological Processes: A Case Study in the Xiaoxinganling Mountains–Sanjiang Plain Region, Northeastern China

    Get PDF
    The Xiaoxinganling Mountains–Sanjiang Plain region represents a crucial ecological security barrier for the Northeast China Plain and serves as a vital region for national grain production. Over the past two decades, the region has undergone numerous ecological restoration projects. Nevertheless, the combined impact of enhanced vegetation greening and global climate change on the regional hydrological cycle remains inadequately understood. This study employed the distributed hydrological model ESSI-3, reanalysis datasets, and multi-source satellite remote sensing data to quantitatively evaluate the influences of climate change and vegetation dynamics on regional hydrological processes. The study period spans from 2000 to 2020, during which there were significant increases in regional precipitation and leaf area index (p \u3c 0.05). The hydrological simulation results exhibited strong agreement with observed river discharge, evapotranspiration, and terrestrial water storage anomalies, thereby affirming the ESSI-3 model’s reliability in hydrological change assessment. By employing both a constant scenario that solely considered climate change and a dynamic scenario that integrated vegetation dynamics, the findings reveal that: (1) Regionally, climate change driven by increased precipitation significantly augmented runoff fluxes (0.4 mm/year) and water storage components (2.57 mm/year), while evapotranspiration trends downward, attributed primarily to reductions in solar radiation and wind speed; (2) Vegetation greening reversed the decreasing trend in evapotranspiration to an increasing trend, thus exerting a negative impact on runoff and water storage. However, long-term simulations demonstrated that regional runoff fluxes (0.38 mm/year) and water storage components (2.21 mm/year) continue to increase, mainly due to precipitation increments surpassing those of evapotranspiration; (3) Spatially, vegetation greening altered the surface soil moisture content trend in the eastern forested areas from an increase to a decrease. These findings suggested that sub-regional ecological restoration initiatives, such as afforestation, significantly influence the hydrological cycle, especially in areas with higher vegetation greening. Nevertheless, persistent increases in precipitation could effectively mitigate the moisture deficits induced by vegetation greening. The study’s outcomes provide a basis for alleviating concerns regarding potential water consumption risks associated with future ecological restoration and extensive vegetation greening projects, thereby offering scientific guidance for sustainable water resource management

    NBS-Encoding Genes in Brassica napus Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci

    Get PDF
    Genes containing nucleotide-binding sites (NBS) play an important role in pathogen resistance in plants. However, the evolutionary fate of NBS-encoding genes after formation of allotetraploid Brassica napus (AnAnCnCn, 2n = 38) is still unknown. We performed a genome-wide comparison of putatively functional NBS-encoding genes in B. napus and its progenitor species Brassica rapa (ArAr, 2n = 20) and Brassica oleracea (CoCo, 2n = 18), identifying 464, 202, and 146 putatively functional NBS-encoding genes respectively, with genes unevenly distributed in several clusters. The An-subgenome of B. napus possessed similar numbers of NBS-encoding genes (191 genes) to the Ar genome of B. rapa (202 genes) and similar clustering patterns. However, the Cn genome of B. napus had many more genes (273) than the B. oleracea Co genome (146), with different clustering trends. Only 97 NBS-encoding genes (66.4%) in B. oleracea were homologous with NBS-encoding genes in B. napus, while 176 NBS-encoding genes (87.1%) were homologous between B. rapa and B. napus. These results suggest a greater diversification of NBS-encoding genes in the C genome may have occurred after formation of B. napus. Although most NBS-encoding genes in B. napus appeared to derive from the progenitors, the birth and death of several NBS-encoding genes was also putatively mediated by non-homologous recombination. The Ka/Ks values of most homologous pairs between B. napus and the progenitor species were less than 1, suggesting purifying selection during B. napus evolution. The majority of NBS-encoding genes (60% in all species) showed higher expression levels in root tissue (out of root, leaf, stem, seed and flower tissue types). Comparative analysis of NBS-encoding genes with mapped resistance QTL against three major diseases of B. napus (blackleg, clubroot and Sclerotinia stem rot) found 204 NBS-encoding genes in B. napus located within 71 resistance QTL intervals. The majority of NBS-encoding genes were co-located with resistance QTLs against a single disease, while 47 genes were co-located with QTLs against two diseases and 3 genes were co-located with QTLs against all three. Our results revealed significant variation as well as interesting evolutionary trajectories of NBS-encoding genes in the different Brassica subgenomes, while co-localization of NBS-encoding genes and resistance QTL may facilitate resistance breeding in oilseed rape

    Horizontal gene transfer in plants

    Get PDF
    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components

    Postoperative high-density lipoprotein cholesterol level: an independent prognostic factor for gastric cancer

    Get PDF
    ObjectiveThe relationship between serum lipids and prognosis of gastric cancer has not been confirmed. Our purpose in the study was to investigate the associations between preoperative and postoperative serum lipids level and prognosis in patients with gastric cancer.MethodsA retrospective study was performed on 431 patients who received radical (R0) gastrectomy from 2011 to 2013. Preoperative and postoperative serum lipids level were recorded. Clinical-pathological characteristics, oncologic outcomes, disease-free survival (DFS) and overall survival (OS) were collected. The prognostic significance was determined by Kaplan-Meier analysis and Cox proportional hazards regression model.ResultsThere was no significant difference in DFS and OS according to preoperative serum lipids level. Regarding postoperative serum lipids level, compared to normal high-density lipoprotein cholesterol (HDL-C), low postoperative HDL-C level indicated a shorter OS (hazard ratio: 1.76, 99% confidence interval: 1.31–2.38; P=0.000) and a shorter DFS (hazard ratio: 2.06, 99% confidence interval: 1.55–2.73; P=0.000). However, other postoperative serum lipid molecules were not associated with DFS and OS.ConclusionPostoperative HDL-C might be an independent prognostic factor of gastric cancer

    The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang'E 4

    Get PDF
    Chang'E 4 is the first mission to the far side of the Moon and consists of a lander, a rover, and a relay spacecraft. Lander and rover were launched at 18:23 UTC on December 7, 2018 and landed in the von K\'arm\'an crater at 02:26 UTC on January 3, 2019. Here we describe the Lunar Lander Neutron \& Dosimetry experiment (LND) which is part of the Chang'E 4 Lander scientific payload. Its chief scientific goal is to obtain first active dosimetric measurements on the surface of the Moon. LND also provides observations of fast neutrons which are a result of the interaction of high-energy particle radiation with the lunar regolith and of their thermalized counterpart, thermal neutrons, which are a sensitive indicator of subsurface water content.Comment: 38 pages, submitted to Space Science Review
    • …
    corecore