989 research outputs found
Local transformation of mixed states of two qubits to Bell diagonal states
The optimal entanglement manipulation for a single copy of mixed states of
two qubits is to transform it to a Bell diagonal state. In this paper we derive
an explicit form of the local operation that can realize such a transformation.
The result obtained is universal for arbitrary entangled two-qubit states and
it discloses that the corresponding local filter is not unique for density
matrices with rank and can be exclusively determined for that with
and 4. As illustrations, a four-parameters family of mixed states are explored,
the local filter as well as the transformation probability are given
explicitly, which verify the validity of the general result.Comment: 5 pages, to be published in Phys. Rev.
A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block
A protocol for quantum secure direct communication using blocks of EPR pairs
is proposed. A set of ordered EPR pairs is used as a data block for sending
secret message directly. The ordered EPR set is divided into two particle
sequences, a checking sequence and a message-coding sequence. After
transmitting the checking sequence, the two parties of communication check
eavesdropping by measuring a fraction of particles randomly chosen, with random
choice of two sets of measuring bases. After insuring the security of the
quantum channel, the sender, Alice encodes the secret message directly on the
message-coding sequence and send them to Bob. By combining the checking and
message-coding sequences together, Bob is able to read out the encoded messages
directly. The scheme is secure because an eavesdropper cannot get both
sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
Dynamical fluctuations in classical adiabatic processes: General description and their implications
Dynamical fluctuations in classical adiabatic processes are not considered by
the conventional classical adiabatic theorem. In this work a general result is
derived to describe the intrinsic dynamical fluctuations in classical adiabatic
processes. Interesting implications of our general result are discussed via two
subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model
with an adiabatically moving fixed-point solution, and the possible "pollution"
to Hannay's angle or to other adiabatic phase objects for adiabatic processes
involving non-fixed-point solutions.Comment: 19 pages, no figures, discussion significantly expanded, published
versio
Spectrum of the Vortex Bound States of the Dirac and Schrodinger Hamiltonian in the presence of Superconducting Gaps
We investigate the vortex bound states both Schrodinger and Dirac Hamiltonian
with the s-wave superconducting pairing gap by solving the mean-field
Bogoliubov-de-Gennes equations. The exact vortex bound states spectrum is
numerically determined by the integration method, and also accompanied by the
quasi-classical analysis. It is found that the bound state energies is
proportional to the vortex angular momentum when the chemical potential is
large enough. By applying the external magnetic field, the vortex bound state
energies of the Dirac Hamiltonian are almost unchanged; whereas the energy
shift of the Schrodinger Hamiltonian is proportional to the magnetic field.
These qualitative differences may serve as an indirect evidence of the
existence of Majorana fermions in which the zero mode exists in the case of the
Dirac Hamiltonian only.Comment: 8 pages, 9 figure
Controlled order rearrangement encryption for quantum key distribution
A novel technique is devised to perform orthogonal state quantum key
distribution. In this scheme, entangled parts of a quantum information carrier
are sent from Alice to Bob through two quantum channels. However before the
transmission, the orders of the quantum information carrier in one channel is
reordered so that Eve can not steal useful information. At the receiver's end,
the order of the quantum information carrier is restored. The order
rearrangement operation in both parties is controlled by a prior shared control
key which is used repeatedly in a quantum key distribution session.Comment: 5 pages and 2 figure
Study of Zn O,S Films grown by Aerosol Assisted Chemical Vapour Deposition and their Application as Buffer Layers in Cu In,Ga S,Se 2 Solar Cells
To reduce the use of toxic and expensive elements in chalcopyrite thin film solar cells, materials such as cadmium or indium used in buffer layers need to be substituted. Zn O,S is considered to be a potential buffer layer material when deposited with a fast and inexpensive method. Zn O,S layers have been prepared by aerosol assisted chemical vapour deposition AACVD technique. AACVD technique is a simple non vacuum process where the thin film deposition temperatures do not exceed 250 C. 10 mM spray solution was made by dissolving zinc II acetylacetonate monohydrate in ethanol. The films were grown on Mo substrate at 225 C film growth temperature . The effect of deposition parameters spray solution concentration, N2 flow rate, H2S flow rate on Zn O,S thin film properties were studied with SEM and XRD. Thereupon optimizing the deposition parameters, homogeneous and compact Zn O,S thin films were obtained and the films were employed in the chalcopyrite thin film solar cell structure by growing films on Cu In,Ga S,Se 2 substrates industrially produced by BOSCH Solar CISTech GmbH. The resulting cells were studied using current voltage and quantum efficiency analysis and compared with solar cell references that include In2S3 and CdS as buffer layer deposited by ion layer gas reaction and chemical bath deposition, respectively. The best output of the solar cell containing Zn O,S as buffer layer and without intrinsic ZnO under standard test conditions AM 1.5G, 100 mW cm2, 25 C is Voc 573 mV, Jsc 39.2 mA cm2, FF 68.4 and efficiency of 15.4 being slightly better than the In2S3 or CdS containing solar cell reference
Single photon emitters based on Ni/Si related defects in single crystalline diamond
We present investigations on single Ni/Si related color centers produced via
ion implantation into single crystalline type IIa CVD diamond. Testing
different ion dose combinations we show that there is an upper limit for both
the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of
excess fluorescent background. We demonstrate creation of Ni/Si related centers
showing emission in the spectral range between 767nm and 775nm and narrow
line-widths of 2nm FWHM at room temperature. Measurements of the intensity
auto-correlation functions prove single-photon emission. The investigated color
centers can be coarsely divided into two groups: Drawing from photon statistics
and the degree of polarization in excitation and emission we find that some
color centers behave as two-level, single-dipole systems whereas other centers
exhibit three levels and contributions from two orthogonal dipoles. In
addition, some color centers feature stable and bright emission with saturation
count rates up to 78kcounts/s whereas others show fluctuating count rates and
three-level blinking.Comment: 7 pages, submitted to Applied Physics B, revised versio
Degree of entanglement for two qubits
In this paper, we present a measure to quantify the degree of entanglement
for two qubits in a pure state.Comment: 5 page
Ab initio study of ferroelectric domain walls in PbTiO3
We have investigated the atomistic structure of the 180-degree and 90-degree
domain boundaries in the ferroelectric perovskite compound PbTiO3 using a
first-principles ultrasoft-pseudopotential approach. For each case we have
computed the position, thickness and creation energy of the domain walls, and
an estimate of the barrier height for their motion has been obtained. We find
both kinds of domain walls to be very narrow with a similar width of the order
of one to two lattice constants. The energy of the 90-dergree domain wall is
calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its
180-degree counterpart, and only a miniscule barrier for its motion is found.
As a surprising feature we detected a small offset of 0.15-0.2 eV in the
electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm
Mesoscopic models for DNA stretching under force: new results and comparison to experiments
Single molecule experiments on B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are
characterized by a sudden increase of DNA contour length and a decrease of the
bending rigidity. It has been proposed that the first transition, at forces of
60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA,
while the second one, at stronger forces, is a strand peeling resulting in
single stranded DNAs (ssDNA), similar to thermal denaturation. But due to
experimental conditions these two transitions can overlap, for instance for
poly(dA-dT). We derive analytical formula using a coupled discrete worm like
chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit
of zero force, this model simplifies into a coupled model already developed by
us for studying thermal DNA melting, establishing a connexion with previous
fitting parameter values for denaturation profiles. We find that: (i) ssDNA is
fitted, using an analytical formula, over a nanoNewton range with only three
free parameters, the contour length, the bending modulus and the monomer size;
(ii) a surprisingly good fit on this force range is possible only by choosing a
monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase
length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss)
transitions; (iv) an analytical formula for fitting B to S transitions is
derived in the strong force approximation and for long DNAs, which is in
excellent agreement with exact transfer matrix calculations; (v) this formula
fits perfectly well poly(dG-dC) and -DNA force-extension curves with
consistent parameter values; (vi) a coherent picture, where S to ssDNA
transitions are much more sensitive to base-pair sequence than the B to S one,
emerges.Comment: 14 pages, 9 figure
- …
