470 research outputs found

    Effects of Acute and Chronic Cold Stress on Expression of Cyclooxygenase-2 and Prostaglandin E Synthase mRNA in Quail Intestine

    Get PDF
    The cold temperature, a common environmental stress, reduces the immunity and re-production activities of the poultry. This study aims to investigate the role of acute and chronic cold exposure in the regulation of cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES) expression in the duodenum, jejunum, and ileum of quail. A total of 96 quail with 15 days of age were randomly allocated into 12 groups (8 each group) for exposure to acute (up to 12 h) and chronic (up to 20 days) cold temperature (12±1°C). After that, different segments of the intestine were harvested and subjected to morphology observations under the light and electronic microscopes. qRT-PCR was performed to analyze expression of COX-2 and PTGES, and DNA sequencing was performed to analyze PCR products. The data showed that under acute cold stress, expression of COX-2 and PTGES mRNA was first decreased and then increased in the duodenum, jejunum, and ileum of quail. However, chronic cold stress induced expression of COX-2 and PTGES mRNA in the duodenum, jejunum and ileum of quail, which was then reduced after 20 days of cold exposure. Morphologically, significant changes were also observed in the duodenum, jejunum and ileum after both acute and chronic cold stresses to the animals. The data from the current study indicated that both acute and chronic cold stresses were able to induce inflammation responses in the duodenum, jejunum and ileum, which might be due to the cold-damaged intestinal morphology

    Radiographic Image Enhancement by Wiener Decorrelation

    Get PDF
    The primary focus of the application of image processing to radiography is the problem of segmentation. The general segmentation problem has been attacked on a broad front [1, 2], and thresholding, in particular, is a popular method [1, 3-6]. Unfortunately, geometric unsharpness destroys the crisp edges needed for unambiguous decisions, and this difficulty can be considered a problem in filtering in which the object is to devise a high-pass (sharpening) filter. This approach has been studied for more than 20 years [7-13]

    Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    Full text link
    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure

    Microstructure and properties of a deformation-processed Cu-Cr-Ag in situ composite by directional solidification

    Get PDF
    Cu-7Cr-0.07Ag alloys were prepared by casting and directional solidification, from which deformation-processed in situ composites were prepared by thermo-mechanical processing. The microstructure, mechanical properties, and electrical properties were investigated using optical microscopy, scanning electronic microscopy, tensile testing, and a micro-ohmmeter. The second-phase Cr grains of the directional solidification Cu-7Cr-0.07Ag in situ composite were parallel to the drawing direction and were finer, which led to a higher tensile strength and a better combination of properties

    Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    Get PDF
    Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50–200 nm and the length from tens to hundreds of micrometers. The vapor–solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core–shell interface

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie
    • 

    corecore