18 research outputs found

    Single-nucleotide polymorphisms in PSCA and the risk of breast cancer in a Chinese population.

    Get PDF
    This study explored the associations between common PSCA single-nucleotide polymorphisms (rs2294008, rs2978974, and rs2976392) and breast cancer among 560 breast cancer cases and 583 controls (Chinese Han women). We found rs2294008 was significantly associated with a high risk of breast cancer (homozygote model, odds ratio [OR]: 1.67, 95% confidence interval [CI]: 1.06–2.59; recessive, OR: 1.64, 95% CI: 1.06–2.53). And stratification by menopausal status revealed an association of the minor allele of rs2294008 with breast cancer risk among premenopausal (homozygote model, OR: 2.41, 95% CI: 1.03–5.66; recessive, OR: 2.80, 95 % CI: 1.21–6.47) and postmenopausal women (allele model, OR: 1.29, 95% CI: 1.01–1.65). Rs2978974 influenced the breast cancer risk among postmenopausal women in heterozygote model (OR: 1.47, 95% CI: 1.05–2.07). When stratified by clinicopathologic features, the T allele of rs2294008 was associated with progesterone receptor status (homozygote model, OR: 1.98, 95% CI: 1.08–3.63; recessive, OR: 1.87, 95% CI: 1.04–3.37), and the rs2976392 polymorphism was associated with high lymph node metastasis risk in homozygote model (OR: 2.09, 95%CI: 1.01–4.31). Further haplotype analysis suggested that Trs2294008 Ars2976392 Grs2978974haplotype enhances breast cancer risk (OR:1.52, 95%CI:1.23-1.89, P\u3c0.001). Therefore, among Chinese Han women, the PSCArs2294008, rs2978974, and rs2976392 minor alleles are associated with increased breast cancer risk especially in progesterone receptor positive breast cancer patients, with breast cancer risk in postmenopausal women, and with high lymph node metastasis risk, respectively. Moreover, Trs2294008 Ars2976392 Grs2978974 haplotype was associated with significantly increased risk of breast cancer

    Which sample type is better for Xpert MTB/RIF to diagnose adult and pediatric pulmonary tuberculosis?

    Get PDF
    OBJECTIVE: This review aimed to identify proper respiratory-related sample types for adult and pediatric pulmonary tuberculosis (PTB), respectively, by comparing performance of Xpert MTB/RIF when using bronchoalveolar lavage (BAL), induced sputum (IS), expectorated sputum (ES), nasopharyngeal aspirates (NPAs), and gastric aspiration (GA) as sample. METHODS: Articles were searched in Web of Science, PubMed, and Ovid from inception up to 29 June 2020. Pooled sensitivity and specificity were calculated, each with a 95% confidence interval (CI). Quality assessment and heterogeneity evaluation across included studies were performed. RESULTS: A total of 50 articles were included. The respective sensitivity and specificity were 87% (95% CI: 0.84-0.89), 91% (95% CI: 0.90-0.92) and 95% (95% CI: 0.93-0.97) in the adult BAL group; 90% (95% CI: 0.88-0.91), 98% (95% CI: 0.97-0.98) and 97% (95% CI: 0.95-0.99) in the adult ES group; 86% (95% CI: 0.84-0.89) and 97% (95% CI: 0.96-0.98) in the adult IS group. Xpert MTB/RIF showed the sensitivity and specificity of 14% (95% CI: 0.10-0.19) and 99% (95% CI: 0.97-1.00) in the pediatric ES group; 80% (95% CI: 0.72-0.87) and 94% (95% CI: 0.92-0.95) in the pediatric GA group; 67% (95% CI: 0.62-0.72) and 99% (95% CI: 0.98-0.99) in the pediatric IS group; and 54% (95% CI: 0.43-0.64) and 99% (95% CI: 0.97-0.99) in the pediatric NPA group. The heterogeneity across included studies was deemed acceptable. CONCLUSION: Considering diagnostic accuracy, cost and sampling process, ES was a better choice than other sample types for diagnosing adult PTB, especially HIV-associated PTB. GA might be more suitable than other sample types for diagnosing pediatric PTB. The actual choice of sample types should also consider the needs of specific situations

    Fatigue behaviors and damage mechanism of a Cr-Mn-N austenitic steel

    Get PDF
    The fatigue properties and the damage mechanism of a Cr-Mn austenite steel were investigated using four-point bend fatigue testing. The stress-number of cycles to failure (S-N) curve of the Cr-Mn austenite steel was measured at room temperature, at the frequency of f=20 Hz and the stress ratio of R=0.1. The fatigue strength of this Cr-Mn austenite steel was measured to be 503 MPa in the maximum stress. Multiple cracks are initiated on the sample surface after fatigue failure tests, and usually only one or two of them can lead to the final failure of the samples. Most of the cracks are initiated at the {111 }primary slip bands, especially within coarse grains. When a fatigue crack meets a new grain, it adapts to slip bands in this grain and hardly extends along the foregoing route in the previous grain. A crack is deflected at a grain boundary by crack plane twisting and tiling on the grain boundary plane, causing fracture steps on the fracture surface

    Analysis of Virtual Water Trade Flow and Driving Factors in the European Union

    No full text
    The inefficient application of water resources has become an urgent problem restricting the world’s sustainable development. Virtual Water Trade opens a new perspective on improving water resource utilization efficiency. Based on a multi-regional input–output model and the logarithmic mean Divisia index, the virtual water flows between 2000–2014 in 43 countries and regions have been evaluated, and the driving forces of changes in virtual water flows for the European Union were revealed. During the study period, the total amount of virtual water flow continued to increase. The United Kingdom is a net virtual water importer that depends on the European Union significantly. There was a large amount of virtual water flow from the European Union to the United States during 2000–2012. However, China gradually seized the share of virtual water from European Union exports after 2012. Economic effects and virtual water intensity effects are the most significant drivers of virtual water flows. The difference is that the economic effect positively drives virtual water flows, while the virtual water intensity effect negatively influences. The results reveal the nature of the United Kingdom in the virtual water trade and can provide post-Brexit recommendations

    Variation and internal-external driving forces of grey water footprint efficiency in China's Yellow River Basin.

    No full text
    Grey water footprint (GWF) efficiency is a reflection of both water pollution and the economy. The assessment of GWF and its efficiency is conducive to improving water environment quality and achieving sustainable development. This study introduces a comprehensive approach to assessing and analyzing the GWF efficiency. Based on the measurement of the GWF efficiency, the kernel density estimation and the Dagum Gini coefficient method are introduced to investigate the spatial and temporal variation of the GWF efficiency. The Geodetector method is also innovatively used to investigate the internal and external driving forces of GWF efficiency, not only revealing the effects of individual factors, but also probing the interaction between different drivers. For demonstrating this assessment approach, nine provinces in China's Yellow River Basin from 2005 to 2020 are chosen for the study. The results show that: (1) the GWF efficiency of the basin increases from 23.92 yuan/m3 in 2005 to 164.87 yuan/m3 in 2020, showing a distribution pattern of "low in the western and high in the eastern". Agricultural GWF is the main contributor to the GWF. (2) The temporal variation of the GWF efficiency shows a rising trend, and the kernel density curve has noticeable left trailing and polarization characteristics. The spatial variation of the GWF efficiency fluctuates upwards, accompanied by a rise in the overall Gini coefficient from 0.25 to 0.28. Inter-regional variation of the GWF efficiency is the primary source of spatial variation, with an average contribution of 73.39%. (3) For internal driving forces, economic development is the main driver of the GWF efficiency, and the interaction of any two internal factors enhances the explanatory power. For external driving forces, capital stock reflects the greatest impact. The interaction combinations with the highest q statistics for upstream, midstream and downstream are capital stock and population density, technological innovation and population density, and industrial structure and population density, respectively

    Numerical Research of an Ice Accretion Delay Method by the Bio-Inspired Leading Edge

    No full text
    The accumulation of ice on aircraft is a typical meteorological issue. The ice accretion on the wing’s leading edge can cause an earlier stall and significantly increase the safety risks. Because the equivalent shape of the wing will change based on the ice pattern on the leading edge, it is crucial to predict the ice pattern of the aircraft and design the anti-icing device. The ice accretion is predicted in the present work through a multi-shot approach. In the current study, a bio-inspired leading edge that can generate multiple pairs of counter-rotating vortices is used to alter the trajectory of the water droplets. This results in a lowering of the ratio of droplet attachment on the leading edge, hence and the ice accretion time, which is an indication of hazardous flight conditions, can be delayed. As a result, the spanwise continuous ice transforms into the discontinuous ice. Meanwhile, the Procrustes analysis provides a result for the thickness of the ice pattern on the wing model based on a variety of parameters for the leading edge

    Electromagnetically induced transparency based on magnetic toroidal mode of dielectric reverse-symmetric spiral metasurfaces

    No full text
    The intriguing properties of the toroidal mode (TM) resonance can potentially promote a low-loss light–matter interaction. This study proposes an electromagnetically induced transparency (EIT) resonance with a high quality factor, which can reach 7798, and low mode volume can reach 0.009  μ m ^3 , high contrast ratio can reach nearly 100%, in the near-infrared region, which is generated by the magnetic TM in a reverse-symmetric coupling spiral metasurface. A two-oscillator model can only explain the influence of near-field coupling at the EIT point for weak coupling. Moreover, a multipole decomposition method shows that the excitation mechanism of EIT resonances originates from the destructive interference between the subradiant modes (magnetic toroidal dipole-electric quadrupole) and magnetic dipole resonance. Consequently, a new general extinction spectrum interference model is applied to fit all coupling conditions for both weak and strong coupling results that perfectly correspond to the multipole decomposition method. The results of this study could be useful in the analysis and understanding of the electromagnetic coupling characteristics of nanoparticles and provide a design approach for novel metasurfaces for low-loss optical applications

    Distributed energy power prediction of the variational modal decomposition and Gated Recurrent Unit optimization model based on the whale algorithm

    No full text
    Based on the load characteristics of industrial parks, this paper optimizes the load prediction model of industrial parks, in order to provide data support for the research of scheduling algorithms. Aiming at the influence of Variational Modal Decomposition (VMD) modal parameters K and penalty factor α on the prediction accuracy of short-term power load forecasting method based on variational modal decomposition (VMD) and Gated Recurrent Unit (GRU), Whale Optimization Algorithm (WOA) was proposed. In this paper, WOA is used to optimize VMD decomposition parameters. Then, the optimized decomposition parameters decompose the original load data, and a set of more regular modal components are obtained. Finally, each mode decomposed by the WOA-VMD algorithm was sent to GRU for power prediction. And the prediction results were superimposed and reconstructed to obtain the final result. WOA optimized the search process and found more appropriate parameters for better prediction results. After whale algorithm optimization, Root Mean Square Error (RMSE) decreased from 108.8 MW to 38.29 MW, Mean Absolute Error (MAE) decreased from 83.09 MW to 24.26 MW
    corecore