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Abstract 
The fatigue properties and the damage mechanism of a Cr-Mn austenite steel were 

investigated using four-point bend fatigue testing. The stress-number of cycles to failure (S-N) 

curve of the Cr-Mn austenite steel was measured at room temperature, at the frequency of 

f=20 Hz and the stress ratio of R=0.1. The fatigue strength of this Cr-Mn austenite steel was 

measured to be 503 MPa in the maximum stress. Multiple cracks are initiated on the sample 

surface after fatigue failure tests, and usually only one or two of them can lead to the final 

failure of the samples. Most of the cracks are initiated at the {111}<110> primary slip bands, 

especially within coarse grains. When a fatigue crack meets a new grain, it adapts to slip 

bands in this grain and hardly extends along the foregoing route in the previous grain. A crack 

is deflected at a grain boundary by crack plane twisting and tiling on the grain boundary plane, 

causing fracture steps on the fracture surface.  
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1. Introduction  

Cr-Mn austenite steels are potential substitutions for the common Cr-Ni austenite steels, 

due to lower cost from the low nickel (<5%, or Ni free) content[1,2]. Generally, austenite 

stainless steels are metastable, wherein martensite transformation takes place either directly or 

indirectly[2-6], even under low cyclic stress [4-6]. In order to enhance the stability of 
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austenite phase and keep the low-cost, nitrogen is added in the steels, which can further 

improve the mechanical, chemical and physical properties of these steels [7,8]. Cr-Mn-N 

austenite steels with high strength, ductility and toughness are considered as a group of 

promising structural materials and biological materials that can be used in many engineering 

fields. Recently, the workability, weldability, corrosion resistance and deformation behavior 

of these steels were extensively studied [2,7-9]; however the fatigue properties of Cr-Mn-N 

austenite steels were rarely reported. While in many engineering applications, fatigue is the 

dominant failure mechanism governing the life of a component. The fatigue performance, as 

one of the important mechanical indicators of materials, can be investigated using some 

fatigue testing methods, such as torsion stress fatigue testing, axial load fatigue testing and 

bending fatigue testing. The four-point bend method presents some advantages over the others, 

e.g., convenient sample mounting and dismounting, and simple sample geometry. Therefore, 

the fatigue damage developed during cyclic loading can be readily monitored and studied. 

Using this self-aligning four-point bend testing method, Zhai et al [10-12] have successfully 

investigated and characterized the fatigue properties in different Al alloys, including fatigue 

crack initiation and early growth, fatigue weak-link (i.e., crack initiation site) density and 

strength distribution, and the relation between microstructure and fatigue damage.  

In this work, the four-point bend fatigue testes were performed on a Cr-Mn austenite 

steel to measure the S-N curve and the density and the strength distribution of fatigue weak 

links were then described. Furthermore, the morphology of crack surface was characterized 

and the behaviors of initiation and propagation of cracks were discussed.  

2. Material and experimental procedure 

2.1 Material and samples 

The test material (18Mn18Cr0.5N steel) used in this work was melted in a vacuum 

induction furnace. After electroslag remelting, its chemical composition was measured to be: 

0.09C, 18.70Mn, 18.51Cr, 0.48N, 0.81Si, 0.05V, 0.025P, 0.005S, 0.011Al, and balance Fe in 
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wt.%. After austenitized at 1473 K for 60 min and cooled by water, the specimens were cut 

into size of 36.5 ×10 × 4.6 mm3 for four point bend fatigue tests. As shown in Fig. 1, an 

average grain size of 102 µm (including twin boundaries) can be observed. Its yield and 

ultimate tensile strengths were measured to be 673 and 878 MPa, respectively.  

2.2 Fatigue tests 

Four-point bend fatigue tests were conducted at room temperature in air, at the stress 

ratio of 0.1 and the frequency of 20 Hz, under stress control in a sine wave [10] on an Instron 

8802 servo-hydraulic materials testing machine. The run-out number was set to be 5.5×106 

cycles for S-N curve measurement. The maximum stress levels used in the fatigue tests were 

varied from 105 % to 60 % of the yield strength. The loading state of four-point specimens 

and the specimen geometry are shown in Fig.2. The upper surface of the specimen was 

subjected to tension. The sample surface was ground and mechanically polished before 

fatigue testing.  

In order to conveniently observe the morphology of the fatigue cracks, the fatigue tests 

were terminated automatically when the sample deflection exceeded a predefined value, 115% 

of the maximum deflection amplitude.  

2.3 Fatigue crack and fracture surface 

The fatigue cracks were characterized by means of optical microscopy (OM), scanning 

electron microscopy (SEM) and electron backscatter diffraction (EBSD). SEM analyses were 

carried out using a Zeiss Supra-35 SEM, equipped with a field emission gun and an Oxford 

Instruments HKL Channel 5 EBSD system. The microscope was operated at 20 kV for both 

electron channeling contrast (ECC) imaging and EBSD.  

Some of the fatigued specimens were broken in flexural bending by hand along the 

dominating crack after crack population observation. The facture surfaces, especially the 

crack-initiation sites, were observed in a Zeiss Supra-35 SEM.  
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3. Results and discussions 

3.1 S-N curves and crack population 

Figure 3 shows the S-N curve of the Cr-Mn austenite steel measured by four-point bend 

testing. The fatigue life increased with decreasing stress level, and it showed a linear 

relationship between the applied maximum stress and the logarithm of cycles to failure. The 

fatigue limit was determined to be 75% yield strength (σs), i.e. 503 MPa.  

For those samples subjected under stress level lower than the fatigue limit, slip lines can 

be clearly observed on the surfaces, as shown in Fig.4(a), but no crack was found. With 

increasing applied stress above the fatigue limit, slip lines became broad, and eventually 

fatigue cracks were initiated (Fig. 4(b)). From fig.4(c), multiple cracks were observed on the 

surface after the fatigue tests at a stress level over the fatigue limit. Most of the cracks were 

initiated from the previous slip lines, especially in coarse grains.  

The crack population was subsequently measured from the fatigued samples and plotted 

against the applied maximum cyclic stress in the Cr-Mn austenite steel. As shown in fig.5, the 

number of cracks increases with the increase of stress level. At those stress levels above the 

fatigue limit, there are usually only one or two dominant cracks that lead to the final failure of 

samples.  

Similar to the analysis done in high strength Al alloys [13,14], the relationship of applied 

stress level and total numbers of fatigue cracks on the surface were represented using a 

Weibull distribution function for the Cr-Mn austenite steel. In this work, the fitted curve of 

crack population vs applied maximum stress is also shown in fig.5. The Weibull function used 

in this work is: 

]))(exp[1(
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−−=                             (1) 

where N0 is the maximum possible number of cracks per mm2 that can be formed on the 

surface, and approximately equals to the crack density observed on the surface in tension 
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(6×10 mm2) at the stress level close to the yield strength (σs), and in the present work, 

N0=73/60≈1.22 mm-2; k is a constant; m is the Weibull modulus; and σ0 is the fatigue limit, 

σ0=75% σs. The value of k and m could be determined by fitting the crack population vs the 

maximum stress level curves using the Weibull function which could be rewritten as : 

km
N
N ln)1ln())1ln(ln(

00

+−=−−
σ
σ

                            (2) 

The curve in Fig. 5 could be fitted by linear regression method in a ln(-ln(1-N/N0)) vs 

ln(σ/σ0-1) plot with m as the slope, as shown in Fig.6. Only the data points of crack 

population at relatively higher stress levels were used in the curve fitting, since the data points 

close to the fatigue limit were unreliable for the linear curve fitting. The fitting parameters can 

be found in Fig.6.  

3.2 Strength distribution of fatigue weak links 

If a crack is assumed to initiate from one weak link, the crack density value is 

approximatively equivalent to fatigue weak link density in the steel. Although these fatigue 

cracks were mostly initiated from the previous slip lines, this crack density value was much 

smaller than that of the slip lines. In other words, most slip lines in this steel cannot form 

fatigue cracks. The fatigue weak link density measured in the present work could be regarded 

as the effective weak link density of this steel, which reflects the damage behavior of fatigue 

crack initiation in this steel. Consequently, it can be used to evaluate the quality of an alloy in 

terms of fatigue crack initiation behaviors.   

As depicted in fig.7, the strength distribution of fatigue weak links could also be 

determined from the crack population-stress relationship, which was quantified by taking the 

derivative of Eq.(1) [12,14] 
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n is the characteristic strength distribution of fatigue weak-links in material, representing the 

number of newly formed cracks at a specific stress level σ, and C is a scaling constant. For a 

material with a better fatigue property, N0 should be as small as possible, and the peak in the 

weak-link strength distribution should be as narrow and low as possible[13]. In fig.7, the peak 

in the weak-link strength distribution is narrow, which indicates an excellent fatigue 

performance of the studied Cr-Mn steel.  

3.3 Crack morphology and fracture surface 

Multiply crack initiation sites were observed on the sample surface after the fatigue tests, 

and only one or two of them leads to final failure of this sample, as shown in fig.8. The slip 

lines were clearly visible in the studied steel, and similar slip lines were also observed in the 

fatigued samples of Cu alloys and Cr-Ni austenite steels [15-18], however not in Al alloys 

[11-14]. The dominant crack can be regarded as a coalesced crack constituted by several 

cracks in different grains, which extended across the grain boundaries and twin boundaries. 

The morphology of a dominant crack was observed using OM and ECC imaging shown in 

fig.9 (a) and (b), respectively. According to the OM and ECC images, the outlines of crack 

and grain boundaries (including twin boundaries) were draw and shown in Fig.9(c). In order 

to describe conveniently, the grains related to cracks were coded in numbers.  

It is obvious that the propagation direction of the dominant crack was perpendicular to 

the principal stress. Meanwhile, the orientation of the crack deflected when it entered into the 

next grain. The crack within one grain was predominantly along the slip lines. Obvious jagged 

crack can be found in grain 1 and grain 7, which was also found in the Cr-Ni austenite steel 

with high nitrogen [15].  

In order to further analyze the formation mechanism of the jagged shape and the 

transgranular feature of the crack, SEM images of the local details in the dominant crack are 
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shown in fig. 10. Based on EBSD data analysis, the orientation of grain and the slip systems 

are also given in fig.10.  The details of the crack in grain 7 are shown in Fig. 10 (a).  The 

intersection angle of jagged cracks in this surface (between line 4 and line 5) is very close to 

the angle of the slip lines (between the line 1 and line 2). This indicates that the initiation of a 

micro-crack occurs along a slip band of the {111}• <110> slip system of this austenite steel. 

The crack then propagated in the sample in a jagged form as guided by local slip bands. This 

kind of crack is beneficial to the fatigue performance of materials and can retard the crack 

extension in a certain extent. When a fatigue crack enters into a new grain, it will locally align 

with the new slip bands in this grain and it hardly extends along the foregoing route in the 

previous grain. Fig.10 (b) shows the partial crack across from grain 5 to grain 6. It can be seen 

that the direction of crack extension deflects across the boundary between grain 5 and grain 6, 

because there are diverse orientations of slip bands in different grains. In some previous 

works the phenomenon of crack deflection was pointed out in Al alloy [19,20], although these 

slip bands were not observed clearly.  The jagged crack in grain 6 can be seen from Fig.10 

(b).  From fig.10(c), the crack, crossing the boundary between the grain 4 and grain 5, 

extends along the previous direction for a short distance in grain 5. However there is bigger 

propagation resistance in this direction, and then the expanding direction shifts to the 

approximate direction of a group of slip bands in grain 5.  

In order to further analyze the formation mechanisms of jagged shape and transgranular 

feature of the crack, the SEM images of the local details in the dominated crack are shown in 

fig. 10. Combining EBSD data analysis, the orientation of grain and slip systems were also 

given in fig.10. The details of the crack in grain 7 are shown in Fig. 10 (a). The intersection 

angle of the jagged cracks on this surface (between line 4 and line 5) was very close to the 

angle of the slip lines (between the line1 and line 2). This indicates that the initiation of a 

micro-crack occurs along a slip band of the {111}<110> slip system of this austenite steel. 

This kind of crack is beneficial to the fatigue performance of materials by retarding crack 
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propagation. The jagged cracks can be regarded as the cracks from intercrossing slip bands 

linking together. When a fatigue crack entered next grain, instead of extending along the 

foregoing route from previous grain, it preferred to propagate along a new slip bands in this 

grain. Fig.10 (b) shows a segment of crack propagated across the grain boundary between 

grain 5 to 6. It can be seen that the crack plane deflected at the grain boundary due to the 

difference of their slip band orientation. Previous works in the Al alloys have pointed out 

similar phenomenon of crack deflection [19,20]. A crystallographic model for fatigue crack 

propagation through grain boundaries was established and indicated the key factors (the twist 

and tilt angles) controlling the path and growth rate of a short crack [19]. From fig.10(c), the 

crack, crossing the boundary between grain 4 and grain 5, extended along the previous 

direction for a short distance in grain 5, then the expanding direction shifted to the 

approximate direction of a group of slip bands in grain 5.  

Fig. 11 shows a typical fracture surface of the Cr-Mn steel after four-point bend fatigue 

test. Crack initiation sites, grain boundaries and fracture steps can be observed on the facture 

surface, and are marked using arrows in fig.11. From the previous analysis, the initiations of 

cracks can be related to the slip planes. Comparing with the both sides of grain boundaries 

(red arrows in fig. 11), the deflection of cracks is visible, in agreement with the observations 

on the upper surface (see fig. 10). The fracture steps observed on the fracture surface provide 

the proof of high resistance to crack growth, according to the crystallographic model of 

fracture crack growth [20]. This high resistance to crack propagation may be a main reason 

why only one or two dominated cracks exist on the surface, while most of them were arrested 

and became non-propagating cracks.  

3.4 Discussion 

The initiation of the fatigue cracks in Cr-Ni austenite steels, e.g. 304 and 316 steel, was 

mainly at twin boundaries[16], slip bands and grain boundaries [4,15] , and the fatigue limit 

of 316L steel was 200 MPa (grain size 35 μm) [21].  When the martensitic translation (γ→α') 
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was induced by cyclic strain in a Cr-Ni austenitic steel (Fe-17Cr-13Ni), the nucleation and 

propagation of short cracks were found within martensite phases [5]. Fatigue cracks tend to 

initiate at grain and annealing twin boundaries in the twinning induced plasticity (TWIP) 

steels with high manganese [22]. Umezawa and Nigai [23] suggested that the addition of Mn 

(into Cr-Ni-N austenite steel) enhanced grain boundary cracking and provided a weak link in 

the grain boundary. Fig.12 shows the statistical data on the frequency of initiation sites in the 

present work. Obviously, most cracks initiated from the slip bands, and few cracks nucleated 

at the grain boundaries or twin boundaries in the 18Cr-18Mn-0.5N austenite steel. Also, in a 

super austenitic stainless steel (25Cr-22Ni-7.6Mo-3Mn-0.46N), the crack initiation was found 

at the slip bands [24]. So the addition of Mn in austenite steels is not the main factor resulting 

in the grain boundary cracking under cyclic stresses.  For austenitic steels, the decrease of 

the cracks initiation from grain (twin) boundaries can effectively decrease the weak links of 

the steels under cyclic stresses and improve their fatigue properties.  

The initiation of cracks on the slip bands is closely related to the activity of slip systems, 

which depend on the dislocation motion and structures in the steels under low cyclic stress. 

The addition of nitrogen restrained the formation of dislocation cells and promoted the planar 

glide of dislocation [15,24], which induced the nucleation of cracks at the slip bands. 

Therefore the cracks initiating sites are likely affected by N in the Cr-Mn austenite steel. The 

activity of slip system under low-cycle stress is also related to the strain amplitudes [25], 

which needs more investigations in the Cr-Mn austenite steels. For 316LN austenite steels, the 

nucleation of cracks takes place more frequently at grain boundaries and twins in the 

coarse-grained austenite (average grain size 130µm), while slip bands are preferred sites for 

crack nucleation in the fine-grained austenite (average grain size 43µm) [15]. However, in this 

experimental steel (average grain size 102 µm), the initiation of cracks are mostly from the 

slip bands and hardly from the grain boundaries of large grains, as shown in Fig.4 (b).  

The fatigue cracks propagate mainly along the slip lines and across the boundaries and 
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twin boundaries in the Cr-Mn austenitic steel. The propagating traces of the fatigue cracks are 

shown in Fig.13. The crack propagation along a single slip band is easy, as sketched in Fig. 

13(a). However, multiply slip activities in this steel were also found, as shown in Fig. 13 (b). 

A crack extending along the intercrossing slip bands can lead to a jagged shape, as shown in 

Fig.10 (a), which can hinder the extending of the crack. The grain boundaries and twin 

boundaries can also retard the extending of the cracks, as shown in Fig.13(c),(d) and (e). In 

other words, the increase of the grain boundaries and twin boundaries can enhance the 

resistance to the crack propagation. Although the resistance of the grain boundaries and that 

of the twin boundaries are not calculated in this work, the difference between them is 

probably related to the boundary energy and grain orientation.  

For this experimental steel, few cracks initiate from grain boundaries and twin 

boundaries, so grain refinement will be an effective method to improve the fatigue properties. 

Moreover, promotion of simultaneous activities of multiply slip bands will be another good 

method. As indicated in Fig. 13 (d) and (e), the combined action of both twin boundaries and 

multiply slips can restrain the extending of cracks more effectively.  

4. Conclusions 

The fatigue strength of the Cr-Mn austenite steel was measured to be 503 MPa at a 

run-out 5.5×106 cycles in four-point fatigue bend. Multiple cracks were observed on the 

sample surface after the fatigue failure tests. At each different stress level above the fatigue 

limit, there were usually only one or two dominated cracks that can lead to the final failure of 

samples. Crack population vs. stress level curve was fitted with a Weibull distribution, from 

which the density (N0=1.22 mm-2) and strength distribution (n) of fatigue weak links can be 

obtained. Most of the cracks were initiated from the slip bands of the experimental austenite 

steel, especially in large grains. When a fatigue crack meets a new grain, it will adapt to the 

new slip bands of this grain and hardly extended along the foregoing route in the previous 
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grain. 
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Fig.1 Microstructure of the Cr-Mn austenite steel  

 
 
 

 
Fig.2 The setup of four-point bend testing and, and the geometry and dimensions of a 

four-point bend sample.  
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Fig 3.S-N curves of the samples of the Cr-Mn austenite steel by four-point bend fatigue 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

  
 

Fig.4 Surface morphology after fatigue test at different stress levels a) the maximum cyclic 
stress=73% σs, b) the maximum cyclic stress=85% σs, c) the maximum cyclic stress=95% σs 
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Fig.5 Plots of crack population vs applied maximum cyclic stress  
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Fig.6 ln(-ln(1-(N/N0))) vs ln ((σ/σ0)-1) plots fitted by a Weibull function of the Cr-Mn 

austenite steel 



. 

500 550 600 650 700 750 800
0.000

0.005

0.010

 

 

Nu
m

be
r o

f w
ea

k-
lin

ks
 p

er
 m

m
2

Peak Stress(Mpa)
 

Fig.7 Strength distributions of fatigue weak-links of the Cr-Mn austenite steel 

 

 

 

 

 

 

 

 

 

 

 



 

 
Fig. 8 The crack morphology of the fatigue sample (a) OM, 80% σs , (b) SEM, 90% σs  
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Fig. 9 A dominate crack of the fatigue sample at the stress level, 90% σs (a) OM (b) ECC (c) 
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Fig10. SEM of the dominated crack for the local details corresponding to the position a, b and 

c in fig.9, respectively   
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Fig11. (a) SEM micrograph of the fatigue fracture surface of an experimental steel sample, 

maximum stress, 100% σs, R=0.1, 2.7×105 cycles in four-point bend , (b) showing the partial 

details. Red arrows indicate the grain boundaries, and blue arrows show the fracture steps. 
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Fig. 12 Statistical data on the frequency of initiation sites 

 

 

   

   

 Fig.13 Schematic illustration of the propagating traces of the fatigue cracks across a 

grain (a) single slip (b) multiply slip (c) single slip + twinning (d) single slip + twinning+ 

multiply slip (e) twinning+ multiply slip 
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