38,013 research outputs found

    Observation of a (2X8) surface reconstruction on Si_(1-x)Ge_x alloys grown on (100) Si by molecular beam epitaxy

    Get PDF
    We present evidence supporting the formation of a new, (2×8) surface reconstruction on Si_(1−x)Ge_x alloys grown on (100) Si substrates by molecular‐beam epitaxy. Surfaces of Si_(1−x)Ge_x alloys were studied using reflection high‐energy electron diffraction (RHEED) and low‐energy electron diffraction (LEED) techniques. RHEED patterns from samples with Ge concentrations, x, falling within the range 0.10–0.30 and grown at temperatures between 350 and 550 °C, exhibit n/8 fractional‐order diffraction streaks in addition to the normal (2×1) pattern seen on (100) Si. The presence of fractional‐order diffracted beams is indicative of an eight‐fold‐periodic modulation in electron scattering factor across the alloy surface. LEED patterns from surfaces of samples grown under similar conditions are entirely consistent with these results. In addition, the LEED patterns support the conclusion that the modulation is occurring in the direction of the dimer chains of a (2×1) reconstruction. We have examined the thermal stability of the (2×8) reconstruction and have found that it reverts to (2×1) after annealing to 700 °C and reappears after the sample temperature is allowed to cool below 600 °C. Such behavior suggests that the reconstruction is a stable, ordered phase for which the pair‐correlation function of surface Ge atoms exhibits an eightfold periodicity in the "1" direction of a Si‐like (2×1) reconstruction. We also present a simulation in the kinematic approximation, confirming the validity of our interpretation of these finding

    77Se NMR Investigation of the K(x)Fe(2-y)Se(2) High Tc Superconductor (Tc=33K)

    Full text link
    We report a comprehensive 77Se NMR study of the structural, magnetic, and superconducting properties of a single crystalline sample of the newly discovered FeSe-based high temperature superconductor K(x)Fe(2-y)Se(2) (Tc=33K) in a broad temperature range up to 290 K. We will compare our results with those reported for FeSe (Tc=9K) and FeAs-based high Tc systems.Comment: Final versio

    Topological meaning of Z2_2 numbers in time reversal invariant systems

    Full text link
    We show that the Z2_2 invariant, which classifies the topological properties of time reversal invariant insulators, has deep relationship with the global anomaly. Although the second Chern number is the basic topological invariant characterizing time reversal systems, we show that the relative phase between the Kramers doublet reduces the topological quantum number Z to Z2_2.Comment: 4 pages, typos correcte

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 ÎŒg/m^Âł)

    Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations

    Full text link
    A hybrid scheme between large-scale electronic structure calculations is developed and applied to nanocrystalline silicon with more than 105^5 atoms. Dynamical fracture processes are simulated under external loads in the [001] direction. We shows that the fracture propagates anisotropically on the (001) plane and reconstructed surfaces appear with asymmetric dimers. Step structures are formed in larger systems, which is understood as the beginning of a crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure

    Estimating Form Factors of Bs→Ds(∗)B_s\rightarrow D_s^{(*)} and their Applications to Semi-leptonic and Non-leptonic Decays

    Full text link
    Bs0→Ds−B_s^0\rightarrow D_s^{-} and Bs0→Ds∗−B_s^0\rightarrow D_s^{*-} weak transition form factors are estimated for the whole physical region with a method based on an instantaneous approximated Mandelstam formulation of transition matrix elements and the instantaneous Bethe-Salpeter equation. We apply the estimated form factors to branching ratios, CP asymmetries and polarization fractions of non-leptonic decays within the factorization approximation. And we study the non-factorizable effects and annihilation contributions with the perturbative QCD approach. The branching ratios of semi-leptonic Bs0→Ds(∗)−l+ÎœlB_s^0\rightarrow D_s^{(*)-}l^+\nu_l decays are also evaluated. We show that the calculated decay rates agree well with the available experimental data. The longitudinal polarization fraction of Bs→Ds∗V(A)B_s\rightarrow D_s^*V(A) decays are ∌0.8\sim0.8 when V(A)V(A) denotes a light meson, and are ∌0.5\sim0.5 when V(A)V(A) denotes a DqD_q (q=d,sq=d,s) meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also changed

    The Nature of Optical Features in the Inner Region of the 3C48 Host Galaxy

    Get PDF
    The well-known quasar 3C48 is the most powerful compact steep-spectrum radio-loud QSO at low redshifts. It also has two unusual optical features within the radius of the radio jet (~1"): (1) an anomalous, high-velocity narrow-line component, having several times as much flux as does the narrow-line component coinciding with the broad-line redshift; and (2) a bright continuum peak (3C48A) ~1" northeast of the quasar. Both of these optical features have been conjectured to be related to the radio jet. Here we explore these suggestions. We have obtained Gemini North GMOS integral-field-unit (IFU) spectroscopy of the central region around 3C48. We use the unique features of the IFU data to remove unresolved emission at the position of the quasar. The resolved emission at the wavelength of the high-velocity component is peaked <~0.25" north of the quasar, at virtually the same position angle as the base of the radio jet. These observations appear to confirm that this high-velocity gas is connected with the radio jet. However, most of the emission comes from a region where the jet is still well collimated, rather than from the regions where the radio maps indicate strong interaction with an external medium. We also present the results of HST STIS spectroscopy of 3C48A. We show that 3C48A is dominated by stars with a luminosity-weighted age of ~1.4 X 10^8 years, substantially older than any reasonable estimate for the age of the radio source. Our IFU data indicate a similar age. Thus, 3C48A almost certainly cannot be attributed to jet-induced star formation. The host galaxy of 3C48 is clearly the result of a merger, and 3C48A seems much more likely to be the distorted nucleus of the merging partner, in which star formation was induced during the previous close passage.Comment: 10 pages, accepted by The Astrophysical Journa

    Pion Polarizabilities and Volume Effects in Lattice QCD

    Full text link
    We use chiral perturbation theory to study the extraction of pion electromagnetic polarizabilities from lattice QCD. Chiral extrapolation formulae are derived for partially quenched QCD, and quenched QCD simulations. On a torus, volume dependence of electromagnetic observables is complicated by SO(4) breaking, as well as photon zero-mode interactions. We determine finite volume corrections to the Compton scattering tensor of pions. We argue, however, that such results cannot be used to ascertain volume corrections to polarizabilities determined in lattice QCD with background field methods. Connection is lacking because momentum expansions are not permitted in finite volume. Our argument also applies to form factors. Volume effects for electromagnetic moments cannot be deduced from finite volume form factors.Comment: 5 figs., 19p

    Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Get PDF
    The MANTRA (Middle Atmosphere Nitrogen TRend Assessment) 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W) from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs) that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change) standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%). NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%)
    • 

    corecore