3,593 research outputs found

    PR3 RACIAL DIFFERENCES IN PREFERENCE-BASED HEALTH-RELATED QUALITY OF LIFE ASSESSMENT

    Get PDF

    Design optimization of hot stamping tooling produced by additive manufacturing

    Get PDF
    The design flexibility of Additive Manufacturing (AM) can be utilized to develop innovative and sustainable hot stamping tools with enhanced quenching capability compared to tools manufactured by conventional manufacturing processes. This study proposes a concept for hot stamping tools with integrated lattice structures that selectively substitute a die's solid areas. A lattice structure demonstrates reduced thermal mass and can affect the ability of the tool to absorb heat from the blank and the rate at which the tool is cooled between two consecutive stamping cycles. This study explores the design space of a hot stamping tool with integrated lattice structures. It presents the optimized design for an effective compromise between cooling performance, structural integrity, and several other design parameters shown in the study. The proposed method utilizes a 2D thermo-mechanical finite element analysis model of a single cooling channel combined with Design of Experiments (DoE) to reduce the computational cost. The results show that the integration of lattice structure cannot only deliver improved cooling performance with minimum change in the dimensions of the cooling system but also achieves a faster AM build time since less material is required to be printed

    Characteristic free volume change of bulk metallic glasses

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Characteristic free volumes of bulk metallic glasses : measurement and their correlation with glass-forming ability

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The signalling channel of Central Bank interventions:modelling the Yen/US dollar exchange rate

    Get PDF
    This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of the central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999--2011 on the yen/US dollar dynamics

    Mott physics and band topology in materials with strong spin-orbit interaction

    Full text link
    Recent theory and experiment have revealed that strong spin-orbit coupling can have dramatic qualitative effects on the band structure of weakly interacting solids. Indeed, it leads to a distinct phase of matter, the topological band insulator. In this paper, we consider the combined effects of spin-orbit coupling and strong electron correlation, and show that the former has both quantitative and qualitative effects upon the correlation-driven Mott transition. As a specific example we take Ir-based pyrochlores, where the subsystem of Ir 5d electrons is known to undergo a Mott transition. At weak electron-electron interaction, we predict that Ir electrons are in a metallic phase at weak spin-orbit interaction, and in a topological band insulator phase at strong spin-orbit interaction. Very generally, we show that with increasing strength of the electron-electron interaction, the effective spin-orbit coupling is enhanced, increasing the domain of the topological band insulator. Furthermore, in our model, we argue that with increasing interactions, the topological band insulator is transformed into a "topological Mott insulator" phase, which is characterized by gapless surface spin-only excitations. The full phase diagram also includes a narrow region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron-electron interaction.Comment: 10+ pages including 3+ pages of Supplementary Informatio

    Learning and innovative elements of strategy adoption rules expand cooperative network topologies

    Get PDF
    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoners Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.Comment: 14 pages, 3 Figures + a Supplementary Material with 25 pages, 3 Tables, 12 Figures and 116 reference

    Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study

    Get PDF
    The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general
    corecore