69 research outputs found

    Resolving the Topological Classification of Bismuth with Topological Defects

    Full text link
    Bulk boundary correspondence in topological materials allows to study their bulk topology through the investigation of their topological boundary modes. However, for classes that share similar boundary phenomenology, the growing diversity of topological phases may lead to ambiguity in the topological classification of materials. Such is the current status of bulk bismuth. While some theoretical models indicate that bismuth possesses a trivial topological nature, other theoretical and experimental studies suggest non-trivial topological classifications such as a strong or a higher order topological insulator, both of which hosts helical modes on their boundaries. Here we use a novel approach to resolve the topological classification of bismuth by spectroscopically mapping the response of its boundary modes to a topological defect in the form of a screw dislocation (SD). We find that the edge mode extends over a wide energy range, and withstands crystallographic irregularities, without showing any signs of backscattering. It seems to bind to the bulk SD, as expected for a topological insulator (TI) with non-vanishing weak indices. We argue that the small scale of the bulk energy gap, at the time reversal symmetric momentum LL, positions bismuth within the critical region of a topological phase transition to a strong TI with non-vanishing weak indices. We show that the observed boundary modes are approximately helical already on the Z2\mathbb{Z}_2 trivial side of the topological phase transition. This work opens the door for further possibilities to examine the response of topological phases to crystallographic topological defects, and to uniquely explore their associated bulk boundary phenomena

    Finite-temperature violation of the anomalous transverse Wiedemann-Franz law

    Full text link
    The Wiedemann-Franz (WF) law links the ratio of electronic charge and heat conductivity to fundamental constants. It has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport, which represents the topological nature of the wave function, remains an open question. Here we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3_{3}Ge extended from room temperature down to sub-Kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K, but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature, rather than the inelastic scattering as observed in ordinary metals. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The accuracy of the experiment is supported by the verification of the Bridgman relation between the anomalous Ettingshausen and Nernst effects. Our results identify the anomalous Lorenz ratio as an extremely sensitive probe of Berry spectrum near the chemical potential.Comment: 9 pages,6 figures, Supplemental Material include

    Observation of Spin Hall Effect in Weyl Semimetal WTe2 at Room Temperature

    Full text link
    Discovery of topological Weyl semimetals has revealed the opportunities to realize several extraordinary physical phenomena in condensed matter physics. Specifically, these semimetals with strong spin-orbit coupling, broken inversion symmetry and novel spin texture are predicted to exhibit a large spin Hall effect that can efficiently convert the charge current to a spin current. Here we report the direct experimental observation of a large spin Hall and inverse spin Hall effects in Weyl semimetal WTe2 at room temperature obeying Onsager reciprocity relation. We demonstrate the detection of the pure spin current generated by spin Hall phenomenon in WTe2 by making van der Waals heterostructures with graphene, taking advantage of its long spin coherence length and spin transmission at the heterostructure interface. These experimental findings well supported by ab initio calculations show a large charge-spin conversion efficiency in WTe2; which can pave the way for utilization of spin-orbit induced phenomena in spintronic memory and logic circuit architectures

    Visualizing near-coexistence of massless Dirac electrons and ultra-massive saddle point electrons

    Full text link
    Strong singularities in the electronic density of states amplify correlation effects and play a key role in determining the ordering instabilities in various materials. Recently high order van Hove singularities (VHSs) with diverging power-law scaling have been classified in single-band electron models. We show that the 110 surface of Bismuth exhibits high order VHS with an usually high density of states divergence ∼(E)−0.7\sim (E)^{-0.7}. Detailed mapping of the surface band structure using scanning tunneling microscopy and spectroscopy combined with first-principles calculations show that this singularity occurs in close proximity to Dirac bands located at the center of the surface Brillouin zone. The enhanced power-law divergence is shown to originate from the anisotropic flattening of the Dirac band just above the Dirac node. Such near-coexistence of massless Dirac electrons and ultra-massive saddle points enables to study the interplay of high order VHS and Dirac fermions
    • …
    corecore