672 research outputs found

    Load Sharing Multiobjective Optimization Design of a Split Torque Helicopter Transmission

    Get PDF
    Split torque designs can offer significant advantages over the traditional planetary designs for helicopter transmissions. However, it has two unique properties, gap and phase differences, which result in the risk of unequal load sharing. Various methods have been proposed to eliminate the effect of gap and promote load sharing to a certain extent. In this paper, system design parameters will be optimized to change the phase difference, thereby further improving load sharing. A nonlinear dynamic model is established to measure the load sharing with dynamic mesh forces quantitatively. Afterwards, a multiobjective optimization of a reference split torque design is conducted with the promoting of load sharing property, lightweight, and safety considered as the objectives. The load sharing property, which is measured by load sharing coefficient, is evaluated under multiple operating conditions with dynamic analysis method. To solve the multiobjective model with NSGA-II, an improvement is done to overcome the problem of time consuming. Finally, a satisfied optimal solution is picked up as the final design from the Pareto optimal front, which achieves improvements in all the three objectives compared with the reference design

    Robust Point Cloud Registration Framework Based on Deep Graph Matching(TPAMI Version)

    Full text link
    3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: \href{https://github.com/fukexue/RGM}{https://github.com/fukexue/RGM}.Comment: accepted by TPAMI 2022. arXiv admin note: substantial text overlap with arXiv:2103.0425

    Bimanual Microincision Cataract Surgery versus Coaxial Microincision Cataract Surgery: A Meta-Analysis of Randomized Controlled Trials and Cohort Studies

    Get PDF
    Purpose. This meta-analysis was conducted to compare the intraoperative and postoperative outcomes of bimanual microincision cataract surgery (B-MICS) and coaxial microincision cataract surgery (C-MICS). Methods. Three databases were searched for papers that compared B-MICS and C-MICS from inception to June 2016. The following intraoperative and postoperative outcomes were included in the final meta-analysis: ultrasound time (UST), effective phacoemulsification time (EPT), balanced salt solution use (BSS use), mean surgery time, best-corrected visual acuity (BCVA), central corneal thickness (CCT), and increased CCT. Results. There were no statistically significant differences in mean surgery time, UST, BSS use, BCVA, CCT, or increased CCT (one subgroup at postoperative day 7-8 and another subgroup at postoperative day 30). However, there was less EPT needed during surgery (p<0.01) and lower levels of increased CCT at postoperative day 1 (p=0.02) in the B-MICS group compared with the C-MICS group. Conclusions. The EPT was shorter and increased CCT was less at postoperative day 1 in the B-MICS group. There were no statistically significant differences in other intraoperative and postoperative outcomes between the B-MICS group and the C-MICS group. B-MICS is an efficient and safe cataract surgery procedure

    Electric Field Measurement by Edge Transient Current Technique on Silicon Low Gain Avalanche Detector

    Full text link
    A novel methodology, named the diffusion profile method, is proposed in this research to measure the electric field of a low gain avalanche detector (LGAD).The proposed methodology utilizes the maximum of the time derivative of the edge transient current technique (edge-TCT) test waveform to quantify the dispersion of the light-induced carriers. This method introduces the estimation of the elongation of the carrier cluster caused by diffusion and the divergence of the electric field force during its drift along the detector. The effectiveness of the diffusion profile method is demonstrated through the analysis of both simulated and measured edge-TCT waveforms. Experimental data was collected from a laser scan performed on an LGAD detector along its thickness direction.A simulation procedure has been developed in RASER (RAdiation SEmiconductoR) to generate signals from LGAD.An assumption of immediate one-step carrier multiplication is introduced to simplify the avalanche process.Simulation results were compared with transient current data at the waveform level and showed a favorable match. Both simulation and experimental results have shown that the diffusion profile method could be applied to certain edge-TCT facilities as an alternative of electric field measurement

    Epidemic characteristics and transmission risk prediction of brucellosis in Xi'an city, Northwest China

    Get PDF
    Human brucellosis (HB) has re-emerged in China since the mid-1990s, and exhibited an apparent geographic expansion shifted from the traditional livestock regions to the inland areas of China. It is often neglected in non-traditional epidemic areas, posing a serious threat to public health in big cities. We carried out a retrospective epidemiological study in Xi'an, the largest city in northwestern China. It utilizes long-term surveillance data on HB during 2008–2021 and investigation data during 2014–2021. A total of 1989 HB cases were reported in Xi'an, consisting of 505 local cases, i.e., those located in Xi'an and 1,484 non-local cases, i.e., those located in other cities. Significantly epidemiological heterogeneity was observed between them, mainly owing to differences in the gender, occupation, diagnostic delays, and reporting institutions. Serological investigations suggested that 59 people and 1,822 animals (sheep, cattle, and cows) tested positive for brucellosis from 2014 to 2021, with the annual average seroprevalence rates were 1.38 and 1.54%, respectively. The annual animal seroprevalence rate was positively correlated with the annual incidence of non-local HB cases. Multivariate boosted regression tree models revealed that gross domestic product, population density, length of township roads, number of farms, and nighttime lights substantially contributed to the spatial distribution of local HB. Approximately 7.84 million people inhabited the potential infection risk zones in Xi'an. Our study highlights the reemergence of HB in non-epidemic areas and provides a baseline for large and medium-sized cities to identify regions, where prevention and control efforts should be prioritized in the future

    MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC

    Get PDF
    The metal–support interaction offers electronic, compositional, and geometric effects that could enhance catalytic activity and stability. Herein, a high corrosion resistance and an excellent electrical conductivity MXene (Ti3C2Tx) hybrid with a carbon nanotube (CNT) composite material is developed as a support for Pt. Such a composite catalyst enhances durability and improved oxygen reduction reaction activity compared to the commercial Pt/C catalyst. The mass activity of Pt/CNT-MXene demonstrates a 3.4-fold improvement over that of Pt/C. The electrochemical surface area of Pt/CNT–Ti3C2Tx (1:1) catalysts shows only 6% drop with respect to that in Pt/C of 27% after 2000 cycle potential sweeping. Furthermore, the Pt/CNT–Ti3C2Tx (1:1) is used as a cathode catalyst for single cell and stack, and the maximum power density of the stack reaches 138 W. The structure distortion of the Pt cluster induced by MXene is disadvantageous to the desorption of O atoms. This issue can be solved by adding CNT on MXene to stabilize the Pt cluster. These remarkable catalytic performances could be attributed to the synergistic effect between Pt and CNT–Ti3C2Tx
    • …
    corecore