Identifying RFID Tags in Collisions

Abstract

How to obtain the information from massive tags is a key focus of RFID applications. The occurrence of collisions leads to problems such as reduced identification efficiency in RFID networks. To tackle such challenges, most tag collision arbitration protocols focus on scheduling tag identification with collision avoidance. However, how to effectively identify tags in collisions to improve identification efficiency has not been well explored. In this paper, we propose a group query allocation method to divide the string space into mutually disjoint subsets which contains several strings. Each string can be viewed as a full ID or partial ID of a tag. When multiple string from a subset are sent simultaneously, the reader can identify all of them in a time slot. Based on the group query allocation method, a segment detection based characteristic group query tree (SD-CGQT) protocol is presented for fast tag identification by significantly reducing the collision slots and transmitted bits. Numerous experimental results verify the superiority of the proposed SD-CGQT, compared to prior arts in system efficiency, total identification time, communication complexity and energy consumption

    Similar works