876 research outputs found

    Could the 21-cm absorption be explained by the dark matter suggested by 8^8Be transitions?

    Full text link
    The stronger than expected 21-cm absorption was observed by EDGES recently, and another anomaly of 8^8Be transitions would be signatures of new interactions. These two issues may be related to each other, e.g., pseudoscalar AA mediated fermionic millicharged dark matter (DM), and the 21-cm absorption could be induced by photon mediated scattering between MeV millicharged DM and hydrogen. This will be explored in this paper. For fermionic millicharged DM χˉχ\bar{\chi} \chi with masses in a range of 2mA<2mχ<3mA2 m_A < 2 m_{\chi} < 3 m_A, the p-wave annihilation χˉχAA\bar{\chi} \chi \to A A would be dominant during DM freeze-out. The s-wave annihilation χˉχ\bar{\chi} \chi A,γ\to A, \gamma e+e\to e^+ e^- is tolerant by constraints from CMB and the 21-cm absorption. The millicharged DM can evade constraints from direct detection experiments. The process of K+π+π0K^+ \to \pi^+ \pi^0 with the invisible decay π0χˉχ\pi^0 \to \bar{\chi} \chi could be employed to search for the millicharged DM, and future high intensity K+K^+ sources, such as NA62, will do the job.Comment: 6 pages, 2 figures, the accepted version, EPJ

    Multi-Receiver Quantum Dense Coding with Non-Symmetric Quantum Channel

    Full text link
    A two-receiver quantum dense coding scheme and an NN-receiver quantum dense coding scheme, in the case of non-symmetric Hilbert spaces of the particles of the quantum channel, are investigated in this paper. A sender can send his messages to many receivers simultaneously. The scheme can be applied to quantum secret sharing and controlled quantum dense coding.Comment: To appear in Journal of the Korean Physical Societ

    The α1‐adrenergic receptor is involved in hepcidin upregulation induced by adrenaline and norepinephrine via the STAT3 pathway

    Get PDF
    Elevated body iron stores are associated with hypertension progression, while hypertension is associated with elevated plasma catecholamine levels in patients. However, there is a gap in our understanding of the connection between catecholamines and iron regulation. Hepcidin is a key iron‐regulatory hormone, which maintains body iron balance. In the present study, we investigated the effects of adrenaline (AD) and norepinephrine (NE) on hepatic hepcidin regulation. Mice were treated with AD, NE, phenylephrine (PE, α1‐adrenergic receptor agonist), prazosin (PZ, α1‐adrenergic receptor antagonist), and/or propranolol (Pro, β‐adrenergic receptor antagonist). The levels of hepcidin, as well as signal transducer and activator of transcription 3 (STAT3), ferroportin 1 (FPN1), and ferritin‐light (Ft‐L) protein in the liver or spleen, were assessed. Six hours after AD, NE, or PE treatment, hepatic hepcidin mRNA levels increased. Pretreatment with PZ, but not Pro, abolished the effects of AD or NE on STAT3 phosphorylation and hepatic hepcidin expression. When mice were treated with AD or NE continuously for 7 days, an increase in hepatic hepcidin mRNA levels and serum hepcidin concentration was also observed. Meanwhile, the expected downstream effects of elevated hepcidin, namely decreased FPN1 expression and increased Ft‐L protein and non‐heme iron concentrations in the spleen, were observed after the continuous AD or NE treatments. Taken together, we found that AD or NE increase hepatic hepcidin expression via the α1‐adrenergic receptor and STAT3 pathways in mice. The elevated hepatic hepcidin decreased FPN1 levels in the spleen, likely causing the increased iron accumulation in the spleen

    A Combined Morphological and Molecular Evolutionary Analysis of Karst-Environment Adaptation for the Genus Urophysa (Ranunculaceae)

    Get PDF
    The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants
    corecore