19,596 research outputs found

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure

    Impact of anthropogenic emission on air quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Get PDF
    The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the spring travel rush before the 2009 Festival resulted in high level pollutants of NOx (270 μg m−3), CO (2572 μg m−3), black carbon (BC) (8.5 μg m−3) and extremely low single scattering albedo of 0.76 in Shanghai, indicating strong, fresh combustion. Organics contributed most to PM2.5, followed by NO3−, NH4+, and SO42−. During the Chinese Lunar New Year\u27s Eve and Day, widespread usage of fireworks caused heavy pollution of extremely high aerosol concentration, scattering coefficient, SO2, and NOx. Due to the spring travel rush after the festival, anthropogenic emissions gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3−, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to an increase in human activity. There was a greater demand for energy as vast numbers of people using public transportation or driving their own vehicles returned home after the Festival. Factories and constructions sites were operating again. The potential source contribution function (PSCF) analysis illustrated the possible source areas for air pollutants of Shanghai. The effects of regional and long-range transport were both revealed. Five major sources, i.e. natural sources, vehicular emissions, burning of fireworks, industrial and metallurgical emissions, and coal burning were identified using the principle component analysis. The average visibility during the whole study period was less than 6 km. It had been estimated that 50% of the total light extinction was due to the high water vapor in the atmosphere. This study demonstrates that organic aerosol was the largest contributor to aerosol extinction at 47%, followed by sulfate ammonium, nitrate ammonium, and EC at 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC) on the formation of air pollution, and suggested the importance of controlling vehicle numbers and emissions in mega-cities of China as its population and economy continue to grow

    Experimental Assessment of Building Blockage Effects in a Simplified Urban District

    Get PDF
    This study presents experimental results of velocity distribution and water depth at specific locations obtained from simplified urban district experiments accounting for the effect of building blockage. Laboratory experiments are performed inside a flume (0.8m×0.8m×18m) for various arrangements of pervious and impervious building blocks. The Digital Particle Velocimetry System (DPIV) was used for recording velocity distributions behind the building blocks under three upstream discharge ratios. The relationship between building blockage and flow pattern is determined as well as the pervious effect for wake flow characteristics behind the blocks. The obtained experiment data can be readily used to validate or calibrate numerical models for urban flood simulations.This is the final version of the article. Available from Elsevier via the DOI in this record.This study presents experimental results of velocity distribution and water depth at specific locations obtained from simplified urban district experiments accounting for the effect of building blockage. Laboratory experiments are performed inside a flume (0.8m×0.8m×18m) for various arrangements of pervious and impervious building blocks. The Digital Particle Velocimetry System (DPIV) was used for recording velocity distributions behind the building blocks under three upstream discharge ratios. The relationship between building blockage and flow pattern is determined as well as the pervious effect for wake flow characteristics behind the blocks. The obtained experiment data can be readily used to validate or calibrate numerical models for urban flood simulations
    • …
    corecore