242 research outputs found

    A luminosity distribution for kilonovae based on short gamma-ray burst afterglows

    Get PDF
    The combined detection of a gravitational-wave signal, kilonova, and short gamma-ray burst (sGRB) from GW170817 marked a scientific breakthrough in the field of multi-messenger astronomy. But even before GW170817, there have been a number of sGRBs with possible associated kilonova detections. In this work, we re-examine these "historical" sGRB afterglows with a combination of state-of-the-art afterglow and kilonova models. This allows us to include optical/near-infrared synchrotron emission produced by the sGRB as well as ultraviolet/optical/near-infrared emission powered by the radioactive decay of rr-process elements (i.e., the kilonova). Fitting the lightcurves, we derive the velocity and the mass distribution as well as the composition of the ejected material. The posteriors on kilonova parameters obtained from the fit were turned into distributions for the peak magnitude of the kilonova emission in different bands and the time at which this peak occurs. From the sGRB with an associated kilonova, we found that the peak magnitude in H bands falls in the range [-16.2, -13.1] (95%95\% of confidence) and occurs within 0.83.6days0.8-3.6\,\rm days after the sGRB prompt emission. In g band instead we obtain a peak magnitude in range [-16.8, -12.3] occurring within the first 18hr18\,\rm hr after the sGRB prompt. From the luminosity distributions of GW170817/AT2017gfo, kilonova candidates GRB130603B, GRB050709 and GRB060614 (with the possible inclusion of GRB150101B) and the upper limits from all the other sGRBs not associated with any kilonova detection we obtain for the first time a kilonova luminosity function in different bands.Comment: Published in MNRAS, 24 pages, 14 figure

    Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.

    Get PDF
    Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal loss and microglial activation in the ipsilateral non-infarcted zone. Further, we demonstrate the presence of neuronal loss affecting the surviving penumbra, with no or only mild microglial activation, and no significant relationship between these two processes. Thus, microglial activation may not contribute to penumbral neuronal loss in man, and its presence in the ipsilateral hemisphere may merely reflect secondary remote degeneration. Selective neuronal loss in the surviving penumbra may represent a novel therapeutic target as an adjunct to penumbral salvage to further improve functional outcome. However, microglial activation may not stand as the primary therapeutic approach. Protecting the penumbra by acutely improving perfusion and oxygenation in conjunction with thrombectomy for example, may be a better approach. 11C-flumazenil PET would be useful to monitor the effects of such therapies

    Differential effects of Down's syndrome and Alzheimer's neuropathology on default mode connectivity.

    Get PDF
    Down's syndrome is a chromosomal disorder that invariably results in both intellectual disability and Alzheimer's disease neuropathology. However, only a limited number of studies to date have investigated intrinsic brain network organisation in people with Down's syndrome, none of which addressed the links between functional connectivity and Alzheimer's disease. In this cross-sectional study, we employed 11 C-Pittsburgh Compound-B (PiB) positron emission tomography in order to group participants with Down's syndrome based on the presence of fibrillar beta-amyloid neuropathology. We also acquired resting state functional magnetic resonance imaging data to interrogate the connectivity of the default mode network; a large-scale system with demonstrated links to Alzheimer's disease. The results revealed widespread positive connectivity of the default mode network in people with Down's syndrome (n = 34, ages 30-55, median age = 43.5) and a stark lack of anti-correlation. However, in contrast to typically developing controls (n = 20, ages 30-55, median age = 43.5), the Down's syndrome group also showed significantly weaker connections in localised frontal and posterior brain regions. Notably, while a comparison of the PiB-negative Down's syndrome group (n = 19, ages 30-48, median age = 41.0) to controls suggested that alterations in default mode connectivity to frontal brain regions are related to atypical development, a comparison of the PiB-positive (n = 15, ages 39-55, median age = 48.0) and PiB-negative Down's syndrome groups indicated that aberrant connectivity in posterior cortices is associated with the presence of Alzheimer's disease neuropathology. Such distinct profiles of altered connectivity not only further our understanding of the brain physiology that underlies these two inherently linked conditions but may also potentially provide a biomarker for future studies of neurodegeneration in people with Down's syndrome

    Doing cold smarter

    Get PDF
    Cold has been much neglected in the energy debate. Governments are developing strategies and policies to green everything from electricity to transport to heat, but the energy and environmental impacts of cooling have so far been largely ignored. This is a serious oversight, since making things cold is energy intensive and can be highly polluting, and demand for cooling in all its forms is booming worldwide – especially in developing countries. According to one projection, by the end of this century global demand for air conditioning alone could consume the equivalent of half our worldwide electricity generation today – and most of the increase will come in developing markets. The ‘greening’ of cold is clearly an urgent global problem – but it may also offer Britain a massive business opportunity. Cold may have been ignored but is vitally important to many aspects of modern life. An effective cold chain, for example, is essential for tackling problems such as food waste, food security, water conservation and public health. Cooling is also critical for many less obvious but essential functions: data centres couldn’t operate without it, nor for example MRI scanners in medicine or superconductors in power electronics. Cooling also provides modern levels of comfort in hot countries – and can make the difference between some regions being habitable or not. At the same time, vast amounts of cold are wasted – for instance during the regasification of LNG – which could in principle be recycled to satisfy some of this demand and start to reduce the environmental damage caused by cooling. Such a system-level approach – which starts by asking what energy services we need, and what is the least damaging way to provide them, rather than accepting existing practices as a fait accompli – has recently been coined the ‘Cold Economy’. It is clear the Cold Economy could unleash a wide range of innovative clean cold technologies and provide energy resilience, economic growth and environmental benefits, but there is an urgent need to develop a system-level analysis of this problem and the potential solutions to inform both industry and policymakers. The Birmingham Policy Commission: Doing Cold Smarter was convened to start this work

    Dissociable rate-dependent effects of oral methylphenidate on impulsivity and D2/3 receptor availability in the striatum.

    Get PDF
    We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [(18)F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [(18)F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms.This work was funded by Medical Research Council Grant G0701500, and by a joint award from the Medical Research Council (Grant G1000183) and the Wellcome Trust (Grant 093875/Z/10/Z) in support of the Behavioural and Clinical Neuroscience Institute at the University of Cambridge. We also acknowledge funding from the Medical Research Council in support of the ICCAM addiction cluster in the United Kingdom (G1000018). B.J. is supported by grants from the AXA Research Fund and the Australian National Health and Medical Research Council (Grant 1016313).This is the author accepted manuscript. The final version is available from Society for Neuroscience via http://doi.org/10.1523/JNEUROSCI.3890-14.201

    Delineating the topography of amyloid-associated cortical atrophy in Down syndrome

    Get PDF
    Older adults with Down syndrome (DS) often have Alzheimer's disease (AD) neuropathologies. Although positron emission tomography imaging studies of amyloid deposition (beta amyloid, Aβ) have been associated with worse clinical prognosis and cognitive impairment, their relationships with cortical thickness remain unclear in people with DS. In a sample of 44 DS adults who underwent cognitive assessments, [C]-PiB positron emission tomography, and T1-weighted magnetization-prepared rapid gradient echo, we used mixed effect models to evaluate the spatial relationships between Aβ binding with patterns of cortical thickness. Partial Spearman correlations were used to delineate the topography of local Aβ-associated cortical thinning. [C]-PiB nondisplaceable binding potential was negatively associated with decreased cortical thickness. Locally, regional [C]-PiB retention was negatively correlated with cortical thickness in widespread cortices, predominantly in temporoparietal regions. Contrary to the prevailing evidence in established AD, we propose that our findings implicate Aβ in spatial patterns of atrophy that recapitulated the “cortical signature” of neurodegeneration in AD, conferring support to recent recommendations for earlier disease-interventions
    corecore