33 research outputs found

    Orally Administrated Cinnamon Extract Reduces β-Amyloid Oligomerization and Corrects Cognitive Impairment in Alzheimer's Disease Animal Models

    Get PDF
    An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ) play a key role in Alzheimer's disease (AD) pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt), which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet

    Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor

    Get PDF
    The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease

    Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies

    Get PDF
    The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we indentified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF

    Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial

    No full text
    Alan G Wade,1 Mildred Farmer,2 Gil Harari,3 Naama Fund,3 Moshe Laudon,4 Tali Nir,4 Anat Frydman-Marom,4 Nava Zisapel4,51CPS Research, Glasgow, UK; 2Meridien Research Inc., St Petersburg, FL, USA; 3Medistat, Ltd, 4Neurim Pharmaceuticals Ltd, Tel Aviv, Israel; 5Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Purpose: A link between poor sleep quality and Alzheimer’s disease (AD) has recently been suggested. Since endogenous melatonin levels are already reduced at preclinical AD stages, it is important to ask whether replenishing the missing hormone would be beneficial in AD and whether any such effects would be related to the presence of sleep disorder in patients.Patients and methods: The effects of add-on prolonged-release melatonin (PRM) (2 mg) to standard therapy on cognitive functioning and sleep were investigated in 80 patients (men [50.7%], women [49.3%], average age 75.3 years [range, 52–85 years]) diagnosed with mild to moderate AD, with and without insomnia comorbidity, and receiving standard therapy (acetylcholinesterase inhibitors with or without memantine). In this randomized, double-blind, parallel-group study, patients were treated for 2 weeks with placebo and then randomized (1:1) to receive 2 mg of PRM or placebo nightly for 24 weeks, followed by 2 weeks placebo. The AD Assessment Scale–Cognition (ADAS-Cog), Instrumental Activities of Daily Living (IADL), Mini–Mental State Examination (MMSE), sleep, as assessed by the Pittsburgh Sleep Quality Index (PSQI) and a daily sleep diary, and safety parameters were measured. Results: Patients treated with PRM (24 weeks) had significantly better cognitive performance than those treated with placebo, as measured by the IADL (P=0.004) and MMSE (P=0.044). Mean ADAS-Cog did not differ between the groups. Sleep efficiency, as measured by the PSQI, component 4, was also better with PRM (P=0.017). In the comorbid insomnia (PSQI ≥6) subgroup, PRM treatment resulted in significant and clinically meaningful effects versus the placebo, in mean IADL (P=0.032), MMSE score (+1.5 versus -3 points) (P=0.0177), and sleep efficiency (P=0.04). Median ADAS-Cog values (–3.5 versus +3 points) (P=0.045) were significantly better with PRM. Differences were more significant at longer treatment duration. PRM was well tolerated, with an adverse event profile similar to that of placebo.Conclusion: Add-on PRM has positive effects on cognitive functioning and sleep maintenance in AD patients compared with placebo, particularly in those with insomnia comorbidity. The results suggest a possible causal link between poor sleep and cognitive decline. Keywords: acetylcholinesterase inhibitors, memantine, insomni

    Diphenylalanine as a Reductionist Model for the Mechanistic Characterization of β<i>-</i>Amyloid Modulators

    No full text
    The phenomenon of protein aggregation into amyloid fibrils is associated with a large number of major diseases of unrelated etiology. Unraveling the mechanism of amyloid self-assembly and identifying therapeutic directions to control this process are of utmost importance. Research in this field has been hampered by several challenges, including reproducibility, low protein purification yields, and the inherent aggregation propensity of amyloidogenic proteins, making them extremely difficult to study. Herein, on the basis of the similarity in the assembly mechanism, as well as the physical, chemical, and biological characteristics, of diphenylalanine nanostructures and aromatic amino acid containing amyloid fibrils, we report a simple, yet robust peptide-based platform that could be used for screening of small molecules potentially capable of interfering with the aggregation process and for mechanistic exploration of their mode of action. The system was validated using four small-molecule inhibitors, and the effect was examined <i>via</i> turbidity assay, thioflavin T fluorescence, and electron microscopy. The aggregation profile of diphenylalanine was very similar to that of β-amyloid polypeptide in the presence of the modulators. Rosmarinic acid emerged as an extremely potent inhibitor and a destabilizer of the aggregates. The effect of stoichiometric variation of rosmarinic acid on the process of destabilization was also probed using a microfluidic technique. Finally, the formation of equimolar complexes of diphenylalanine and inhibitors was detected using mass spectrometry. This approach not only provides a system for high-throughput screening of possible inhibitor molecules from larger libraries of modulators, but is also highly useful for understanding the mechanistic aspects of the interactions leading to the process of inhibition

    Structural basis for inhibiting β-amyloid oligomerization by a non-coded β-breaker-substituted endomorphin analogue

    Full text link
    The distribution of endomorphins (EM) 1 and 2 in the human brain inversely correlates with cerebral neurodegeneration in Alzheimer's disease (AD), implying a protective role. These endogenous opioid peptides incorporate aromatic residues and a β-breaker motif, as seen in several optimized inhibitors of Aβ aggregation. The activity of native endomorphins was studied, as well as the rationally designed analogue Aib-1, which includes a remarkably efficient β-breaker, α-aminoisobutyric acid (Aib). In vitro and GFP fusion protein assays showed that Aib-1 interacted with Aβ and markedly inhibited the formation of toxic oligomer and fibril growth. Moreover, Aib-1 prevented the toxicity of Aβ toward neuronal PC12 cells and markedly rectified reduced longevity of an AD fly model. Atomistic simulations and NMR-derived solution structures revealed that Aib-1 significantly reduced the propensity of Aβ to aggregate due to multimode interactions including aromatic, hydrophobic, and polar contacts. We suggest that hindering the self-assembly process by interfering with the aromatic core of amyloidogenic peptides may pave the way toward developing therapeutic agents to treat amyloid-associated diseases
    corecore