7 research outputs found

    KSHV infection of endothelial cells manipulates CXCR7-mediated signaling: implications for Kaposi’s Sarcoma progression and intervention

    Get PDF
    CXCR7 was recently characterized as an alternative receptor for the chemokine CXCL12/SDF-1, previously thought to bind and signal exclusively through CXCR4.We recently identified CXCR7 as a key cellular factor in the endothelial cell (EC) dysfunction associated with KSHV infection. CXCL12 signaling is critically associated with tumor growth, angiogenesis and metastasis in several diverse tumors and is one of the most studied chemokine/chemokine receptor interactions in cancer systems. The tumorigenic activity of the CXCL12 signaling axis offers an attractive target for therapeutic intervention in multiple cancers including Kaposi’s Sarcoma (KS). However, most of the research to date was based on the assumption that CXCR4 was the sole CXCL12 receptor, and thus focused on the development of CXCR4-targeted treatments

    IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling

    Get PDF
    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3(-/-)×Irf7(-/-) double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-)×Irf5(-/-)×Irf7(-/-) triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-)). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar(-/-) mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/-) mDC. The relative equivalence of TKO and Mavs(-/-) responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5

    Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination

    No full text
    A pesar de que la arquitectura actual parece tener una tendencia general hacia lo mediático, aproximándose cada vez más a convertirse en un producto de consumo del mercado del arte, aún existen unos pocos arquitectos que conservan unos valores y una forma de pensar y hacer arquitectura considerados ya por muchos obsoletos. Uno de estos arquitectos es el madrileño Víctor López Cotelo y con este trabajo se pretende estudiar su obra para tratar de mostrar no sólo que no se trata de valores obsoletos, sino que suponen el mejor camino para llegar a la verdadera arquitectura y por ello estarán siempre vigentes, sin importar los cambios que haya en las modas. Para estudiar la obra de este arquitecto se realiza un recorrido por tres de sus edificios, situados en la ribera del río Sarela, en Santiago de Compostela. Tres obras (Ponte Sarela, la Vaquería y Pontepedriña) que parten de ruinas de piedra y variadas topografías para llegar a tres magníficos edificios en los que el tiempo es el protagonista, el pasado y el presente se dan la mano y la arquitectura se pone al servicio de la vida, con el objetivo de mejorar la de quienes la habitan

    Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination

    No full text
    ABSTRACT Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes

    MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation

    No full text
    The MARCH family of proteins are membrane-associated E3 ubiquitin ligases that down-regulate surface membrane proteins. Expression of MARCH8 in cells causes the ubiquitination and down-regulation of surface CD98 and CD44—cargo proteins that enter cells by clathrin-independent endocytosis and are usually routed to recycling, not degradation
    corecore