28 research outputs found

    Doublet→quartet and doublet→doublet electronic transitions in NO2 by electron impact

    Get PDF
    The electron-impact energy-loss spectrum of nitrogen dioxide (NO2) has been measured at impact energies of 25, 50, and 75 eV, and scattering angles varying from 5° to 80°. A previously unreported spin-forbidden doublet→quartet transition was observed at 4.49 eV, in excellent agreement with theoretical calculations. Doublet→doublet transitions were observed at 2.95, 5.81, 7.48, 8.64, 9.69, 10.52, 10.68, 10.94, and 11.20 eV, in agreement with previous experimental and theoretical work. In addition, numerous doublet→doublet transitions to superexcited states were observed

    Monte Carlo simulations of precise timekeeping in the Milstar communication satellite system

    Get PDF
    The Milstar communications satellite system will provide secure antijam communication capabilities for DOD operations into the next century. In order to accomplish this task, the Milstar system will employ precise timekeeping on its satellites and at its ground control stations. The constellation will consist of four satellites in geosynchronous orbit, each carrying a set of four rubidium (Rb) atomic clocks. Several times a day, during normal operation, the Mission Control Element (MCE) will collect timing information from the constellation, and after several days use this information to update the time and frequency of the satellite clocks. The MCE will maintain precise time with a cesium (Cs) atomic clock, synchronized to UTC(USNO) via a GPS receiver. We have developed a Monte Carlo simulation of Milstar's space segment timekeeping. The simulation includes the effects of: uplink/downlink time transfer noise; satellite crosslink time transfer noise; satellite diurnal temperature variations; satellite and ground station atomic clock noise; and also quantization limits regarding satellite time and frequency corrections. The Monte Carlo simulation capability has proven to be an invaluable tool in assessing the performance characteristics of various timekeeping algorithms proposed for Milstar, and also in highlighting the timekeeping capabilities of the system. Here, we provide a brief overview of the basic Milstar timekeeping architecture as it is presently envisioned. We then describe the Monte Carlo simulation of space segment timekeeping, and provide examples of the simulation's efficacy in resolving timekeeping issues

    Lamp reliability studies for improved satellite rubidium frequency standard

    Get PDF
    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions

    The ac stark shift and space-borne rubidium atomic clocks

    Get PDF
    open7sìDue to its small size, low weight, and low power consumption, the Rb atomic frequency standard (RAFS) is routinely the first choice for atomic timekeeping in space. Consequently, though the device has very good frequency stability (rivaling passive hydrogen masers), there is interest in uncovering the fundamental processes limiting its long-term performance, with the goal of improving the device for future space systems and missions. The ac Stark shift (i. e., light shift) is one of the more likely processes limiting the RAFS' long-term timekeeping ability, yet its manifestation in the RAFS remains poorly understood. In part, this comes from the fact that light-shift induced frequency fluctuations must be quantified in terms of the RAFS' light-shift coefficient and the output variations in the RAFS' rf-discharge lamp, which is a nonlinear inductively-couple plasma (ICP). Here, we analyze the light-shift effect for a family of 10 on-orbit Block-IIR GPS RAFS, examining decade-long records of their on-orbit frequency and rf-discharge lamp fluctuations. We find that the ICP's light intensity variations can take several forms: deterministic aging, jumps, ramps, and non-stationary noise, each of which affects the RAFS' frequency via the light shift. Correlating these light intensity changes with RAFS frequency changes, we estimate the light-shift coefficient, K-LS, for the family of RAFS: K-LS = -(1.9 +/- 0.3) x 10(-12) /%. The 16% family-wide variation in K-LS indicates that while each RAFS may have its own individual K-LS, the variance of K-LS among similarly designed RAFS can be relatively small. Combining K-LS with our estimate of the ICP light intensity's non-stationary noise, we find evidence that random-walk frequency noise in high-quality space-borne RAFS is strongly influenced by the RAFS' rf-discharge lamp via the light shift effect. Published by AIP Publishing.openFormichella, V.; Camparo, J.; Sesia, I.; Signorile, G.; Galleani, L.; Huang, M.; Tavella, P.Formichella, V.; Camparo, J.; Sesia, Ilaria; Signorile, Giovanna; Galleani, L.; Huang, M.; Tavella, Patrizi

    Influence of the atomic-wall collision elasticity on the coherent population trapping resonance shape

    Full text link
    We studied theoretically a coherent population trapping resonance formation in cylindrical cell without buffer gas irradiated by a narrow laser beam. We take into account non-zero probabilities of elastic ("specular") and inelastic ("sticking") collision between the atom and the cell wall. We have developed a theoretical model based on averaging over the random Ramsey pulse sequences of times that atom spent in and out of the beam. It is shown that the shape of coherent population trapping resonance line depends on the probability of elastic collision.Comment: 18 pages, 5 figure

    Flugauswertung der MIRKA-Mission Abschlussbericht

    No full text
    This final report describes the post flight investigation and experiment data evaluation of the MIRKA reentry mission conducted in 1998, comprising contributions of project teams from Dornier Satellitensysteme GmbH, Hyperschall Technologie Goettingen, Jena-Optronik GmbH, Kayser-Threde GmbH and the Space Systems Institute of Stuttgart University. In addition, the document contains papers on mission results that were presented at international conferences. During the reentry mission of MIRKA in October 1997 three flight experiments (denoted HEATIN, PYREX, RAFLEX) were performed, the data of which are analysed and compared to predictions of trajectory simulations and aerothermodynamic calculations. Good agreement could be achieved in sensitivity studies after inclusion of several improvements in the simulation models employed. Uncertainties due to unknown interrelationship reveal the need for continuing research regarding interactions of vehicle dynamics with the flow field and surface catalycity of SiC-based materials in high temperature environment. (orig.)Available from TIB Hannover: RR 1814(1998,16) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany); DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Bonn (Germany)DEGerman
    corecore