714 research outputs found

    The Near Infrared and Multiwavelength Afterglow of GRB 000301c

    Get PDF
    We present near-infrared observations of the counterpart of GRB 000301c. The K' filter (2.1 micron) light curve shows a well-sampled break in the decay slope at t=3.5 days post-burst. The early time slope is very shallow (~ -0.1), while the late time slope is steep (-2.2). Comparison with the optical (R band) light curve shows marginally significant differences, especially in the early time decay slope (which is steeper in the optical) and the break time (which occurs later in the optical). This is contrary to the general expectation that light curve breaks should either be achromatic (e.g., for breaks due to collimation effects) or should occur later at longer wavelengths (for most other breaks). The observed color variations might be intrinsic to the afterglow, or might indicate systematic errors of > 0.08 magnitude in all fluxes. Even if the break is achromatic, we argue that its sharpness poses difficulties for explanations that depend on collimated ejecta. The R light curve shows further signs of fairly rapid variability (a bump, steep drop, and plateau) that are not apparent in the K' light curve. In addition, by combining the IR-optical-UV data with millimeter and radio fluxes, we are able to constrain the locations of the self-absorption break and cooling break and to infer the location of the spectral peak at t=3 days: f_nu = 3.4 mJy at nu=1e12 Hz. Using the multiwavelength spectral energy distribution, we are able to constrain the blast wave energy, which was E > 3e53 erg if the explosion was isotropic. This implies a maximum gamma ray production efficiency of ~ 0.15 for GRB 000301C.Comment: Accepted to The Astrophysical Journal. 24 pages, 4 figures, 3 tables; uses AASTeX 5 macros. This version includes a new figure (R-K' color vs. time), a better sampled R band light curve, and more extensive discussion of the optical data and error analysi

    The optical light curve of GRB 970228 refined

    Full text link
    We present the R and V light curves of the optical counterpart of GRB 970228. A critical analysis of all the available data is made in light of the results achieved in the recent GRB Symposium held in Huntsville and by considering the latest information from the HST images on the underlying nebulosity.Comment: 3 pages, 2 .ps figures, Nuclear Physics style file espcrc2.sty included. To appear in the proceedings of the conference "The Active X-Ray Sky: Results from BeppoSAX and Rossi-XTE", Rome, Italy, 21-24 October, 1997. L. Scarsi, H. Bradt, P. Giommi and F. Fiore editors, Nuc. Phys. B Proc. Supp

    Resistance noise in Bi_2Sr_2CaCu_2O8+δ_{8+\delta}

    Full text link
    The resistance noise in a Bi_2Sr_2CaCu_2O8+δ_{8+\delta} thin film is found to increase strongly in the underdoped regime. While the increase of the raw resistance noise with decreasing temperature appears to roughly track the previously reported pseudogap temperature for this material, standard noise analysis rather suggests that the additional noise contribution is driven by the proximity of the superconductor-insulator transition

    Deep Radio Imaging of Globular Clusters and the Cluster Pulsar Population

    Full text link
    We have obtained deep multifrequency radio observations of seven globular clusters using the Very Large Array and the Australia Telescope Compact Array. Five of these, NGC 6440, NGC 6539, NGC 6544, NGC 6624 and Terzan 5 had previously been detected in a shallower survey for steep spectrum radio sources in globular clusters (Fruchter and Goss 1990). The sixth, the rich globular cluster, Liller 1, had heretofore been undetected in the radio, and the seventh, 47 Tucanae, was not included in our original survey. High resolution 6 and 20 cm images of three of the clusters, NGC 6440, NGC 6539, NGC 6624 reveal only point sources coincident with pulsars which have been discovered subsequent to our first imaging survey. 21 and 18 cm images reveal several point sources within a few core-radii of the center of 47 Tuc. Two of these are identified pulsars, and a third, which is both variable and has a steep spectrum, is also most likely a pulsar previously identified by a pulsed survey. However, the 6, 20 and 90 cm images of NGC 6544, Liller 1 and Terzan 5 display strong steep-spectrum emission which cannot be associated with known pulsars. The image of the rich cluster Terzan 5 displays numerous point sources within 30′′30'', or 4 core radii of the cluster center. The density of these objects rises rapidly toward the core, where an elongated region of emission is found. The brightest individual sources, as well as the extended emission, possess the steep spectra expected of pulsars. Furthermore, the flux distribution of the sources agrees well with the standard pulsar luminosity function. The total luminosity and number of objects observed suggest that Terzan 5 contains more pulsars than any other Galactic globular cluster.Comment: 33 pages, 6 Postscript figures; Accepted for publication in the Astrophysical Journal; abstract abridged. PDF version also available at http://nemesis.stsci.edu/~fruchter/fg99/fg99.pd

    On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329

    Full text link
    The net optical light curves and spectra of the supernova (SN) 2003dh are obtained from the published spectra of GRB 030329, covering about 6 days before SN maximum to about 60 days after. The bulk of the U-band flux is subtracted from the observed spectra using early-time afterglow templates, because strong line blanketing greatly depresses the UV and U-band SN flux in a metal-rich, fast-moving SN atmosphere. The blue-end spectra of the gamma-ray burst (GRB)connected hypernova SN 1998bw is used to determine the amount of subtraction. The subtraction of a host galaxy template affects the late-time results. The derived SN 2003dh light curves are narrower than those of SN 1998bw, rising as fast before maximum, reaching a possibly fainter maximum, and then declining ~ 1.2-1.4 times faster. We then build UVOIR bolometric SN light curve. Allowing for uncertainties, it can be reproduced with a spherical ejecta model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following previous spectrum modelling, and M(Ni56) ~ (0.4 +0.15/-0.1) Msun. This suggests a progenitor main-sequence mass of about 25-40 Msun, lower than SN 1998bw but significantly higher than normal Type Ic SNe and the GRB-unrelated hypernova SN 2002ap.Comment: 18 pages, 7 figures, published by Ap

    High Resolution Infrared Imaging of the Compact Nuclear Source in NGC4258

    Get PDF
    We present high resolution imaging of the nucleus of NGC4258 from 1 micron to 18 microns. Our observations reveal that the previously discovered compact source of emission is unresolved even at the near-infrared resolution of about 0.2 arcsec FWHM which corresponds to about 7 pc at the distance of the galaxy. This is consistent with the source of emission being the region in the neighborhood of the purported 3.5*10^7 M_sun black hole. After correcting for about 18 mags of visual extinction, the infrared data are consistent with a F_nu \propto nu^(-1.4+/-0.1) spectrum from 1.1 micron to 18 micron, implying a non-thermal origin. Based on this spectrum, the total extinction corrected infrared luminosity (1-20 micron) of the central source is 2*10^8 L_sun. We argue that the infrared spectrum and luminosity of the central source obviates the need for a substantial contribution from a standard, thin accretion disk at these wavelengths and calculate the accretion rate through an advection dominated accretion flow to be Mdot \sim 10^(-3) M_sun/yr. The agreement between these observations and the theoretical spectral energy distribution for advection dominated flows provides evidence for the existence of an advection dominated flow in this low luminosity AGN.Comment: 21 pages, 5 figures, Appearing in Mar 2000 ApJ vol. 53

    GRB 070714B - Discovery of the Highest Spectroscopically Confirmed Short Burst Redshift

    Full text link
    Gemini Nod & Shuffle spectroscopy on the host of the short GRB 070714B shows a single emission line at 7167 angstroms which, based on a grizJHK photometric redshift, we conclude is the 3727 angstrom [O II] line. This places the host at a redshift of z=.923 exceeding the previous record for the highest spectroscopically confirmed short burst redshift of z=.546 held by GRB 051221. This dramatically moves back the time at which we know short bursts were being formed, and suggests that the present evidence for an old progenitor population may be observationally biased.Comment: Conference procedings for Gamma Ray Bursts 2007 November 5-9, 2007 Santa Fe, New Mexico (4 pages, 2 figures
    • …
    corecore