21 research outputs found

    Feynman diagrams versus Fermi-gas Feynman emulator

    Get PDF
    Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics

    Separation by Convex Pseudo-Circles

    No full text
    Let S be a finite set of n points in the plane in general position. We prove that every inclusion-maximal family of subsets of S separable by convex pseudo-circles has the same cardinal n 0 + n 1 + n 2 + n 3 . This number does not depend on the configuration of S and is the same as the number of subsets of S separable by true circles. Buzaglo, Holzman, and Pinchasi showed that it is an upper bound for the number of subsets separable by (non necessarily convex) pseudo-circles. Actually, we first count the number of elements in a maximal family of k-subsets of S separable by convex pseudo-circles, for a given k. We show that Lee's result on the number of k-subsets separable by true circles still holds for convex pseudo-circles. In particular, this means that the number of k-subsets of S separable by a maximal family of convex pseudo-circles is an invariant of S: It does not depend on the choice of the maximal family. To prove this result, we introduce a graph that generalizes the dual graph of the order-k Voronoi diagram, and whose vertices are the k-subsets of S separable by a maximal family of convex pseudo-circles. In order to count the number of vertices of this graph, we first show that it admits a planar realization which is a triangulation. It turns out (but is not detailed in the present paper) that these triangulations are the centroid triangulations Liu and Snoeyink conjectured to construct
    corecore