2,746 research outputs found

    Electronic sleep analyzer

    Get PDF
    Electronic instrument automatically monitors the stages of sleep of a human subject. The analyzer provides a series of discrete voltage steps with each step corresponding to a clinical assessment of level of consciousness. It is based on the operation of an EEG and requires very little telemetry bandwidth or time

    EEG sleep analyzer and method of operation Patent

    Get PDF
    Development of apparatus and method for quantitatively measuring brain activity as automatic indication of sleep state and level of consciousnes

    Automated electroencephalography system and electroencephalographic correlates of space motion sickness, part 2

    Get PDF
    Sleep pattern alterations were detected in two subjects by electroencephalographic, electrographic, and electromyographic monitoring before, during and after a 28 day bed rest. Standardized criteria were used for data analysis. During the second half of the bed-rest period, sleep latency and stage 3 increased, while total sleep time, stage 2, and REM latency decreased. In addition, during bed rest both subjects showed an increase in the number of REM periods and a slight increase in stage REM amount. No major alterations were seen in the recovery period. Of the alterations found to be associated with bed rest, only one, the increase in stage 3 sleep, was also seen consistently during Skylab. Conversely, none of the postflight changes seen following Skylab were observed during the post-bed-rest recovery period

    Automated electroencephalography system and electroencephalographic coordinates of space motion sickness, part 1

    Get PDF
    A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions

    Snap-in compressible biomedical electrode

    Get PDF
    A replaceable, prefilled electrode enclosed in a plastic seal and suitably adapted for attachment to a reusable, washable cap having snaps thereon is disclosed. The apparatus is particularly adapted for quick positioning of electrodes to obtain an EEG. The individual electrodes are formed of a sponge body which is filled with a conductive electrolyte gel during manufacture. The sponge body is adjacent to a base formed of a conductive plastic material. The base has at its center a male gripper snap. The cap locates the female snap to enable the electrode to be positioned. The electrode can be stored and used quickly by attaching to the female gripper snap. The snap is correctly positioned and located by mounting it in a stretchable cap. The cap is reusable with new electrodes for each use. The electrolyte gel serves as the contact electrode to achieve a good ohmic contact with the scalp

    Improved biomedical electrode

    Get PDF
    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram

    Fabrication of neurophysiological monitoring systems

    Get PDF
    A system designed to collect electroencephalographic, electro-oculographic, electromyographic, and head motion data is described. The portable instrumentation provides a rapid and simple means by which neurophysiological data can be obtained by the patient in his home and the taped data returned to the laboratory for analysis. The system was designed primarily for the study of sleep

    Research program for experiment M133

    Get PDF
    The development of the automatic data-acquisition and sleep-analysis system is reported. The purpose was consultation and evaluation in the transition of the Skylab M133 Sleep-Monitoring Experiment equipment from prototype of flight status; review of problems associated with acquisition and on-line display of data in near-real time via spacecraft telemetry; and development of laboratory facilities and design of equipment to assure reliable playback and analysis of analog data. The existing prototype system modified, and the changes improve the performance of the analysis circuitry and increase its reliability. These modifications are useful for pre- and postflight analysis, but are not now proposed for the inflight system. There were improvements in the EEG recording cap, some of which will be incorporated into the flight hardware

    Automated electroencephalography system and electroencephalographic correlates of space motion sickness, part 3

    Get PDF
    Computer quantification methods were used to analyze the Skylab electroencephalographic data obtained during the course of the M133 series of experiments. This undertaking was prompted by initial observations made during visual analysis of the tape-recorded sleep records where there appeared to be an increase of the alpha-rhythm frequency during some inflight recording sessions, as compared to preflight baseline observations. A number of potential etiological factors are identified and their various possible influences discussed. The presence of the zero-g state is thought to be an important factor, possibly influencing EEG through alteration of vestibular function and/or by producing fluid shifts secondary to loss of hydrostatic pressure

    Development of a prototype onboard EEG analysis system

    Get PDF
    Laboratory prototype system for acquisition, automatic analysis, and display of astronaut electroencephalographic and electro-oculographic signals, and spacecraft noise effects on slee
    corecore