795 research outputs found

    The 1981 current research on aviation weather (bibliography)

    Get PDF
    Current and ongoing research programs related to various areas of aviation meteorology are presented. Literature searches of major abstract publications, were conducted. Research project managers of various government agencies involved in aviation meteorology research provided a list of current research project titles and managers, supporting organizations, performing organizations, the principal investigators, and the objectives. These are tabulated under the headings of advanced meteorological instruments, forecasting, icing, lightning and atmospheric electricity; fog, visibility, and ceilings; low level wind shear, storm hazards/severe storms, turbulence, winds, and ozone and other meteorological parameters. This information was reviewed and assembled into a bibliography providing a current readily useable source of information in the area of aviation meteorology

    The MgSiO_3 system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data

    Get PDF
    We present new equation-of-state (EoS) data acquired by shock loading to pressures up to 245 GPa on both low-density samples (MgSiO_3 glass) and high-density, polycrystalline aggregates (MgSiO_3 perovskite + majorite). The latter samples were synthesized using a large-volume press. Modeling indicates that these materials transform to perovskite, postperovskite, and/or melt with increasing pressure on their Hugoniots. We fit our results together with existing P-V-T data from dynamic and static compression experiments to constrain the thermal EoS for the three phases, all of which are of fundamental importance to the dynamics of the lower mantle. The EoS for perovskite and postperovskite are well described with third-order Birch-Murnaghan isentropes, offset with a Mie-Grüneisen-Debye formulation for thermal pressure. The addition of shock data helps to distinguish among discrepant static studies of perovskite, and for postperovskite, constrain a value of K' significantly larger than 4. For the melt, we define for the first time a single EoS that fits experimental data from ambient pressure to 230 GPa; the best fit requires a fourth-order isentrope. We also provide a new EoS for Mg_2SiO_4 liquid, calculated in a similar manner. The Grüneisen parameters of the solid phases decrease with pressure, whereas those of the melts increase, consistent with previous shock wave experiments as well as molecular dynamics simulations. We discuss implications of our modeling for thermal expansion in the lower mantle, stabilization of ultra-low-velocity zones associated with melting at the core-mantle boundary, and crystallization of a terrestrial magma ocean

    Simultaneous partitioning of silicon and oxygen into the Earth’s core during early Earth differentiation

    Get PDF
    Silicon and oxygen are potential light elements in the Earth’s core and may be involved in metal-silicate reactions at the present day core-mantle boundary. We have performed multianvil experiments at 25 GPa and 2770–3080K to understand the simultaneous partitioning of these elements between liquid iron–rich metal and silicate melt. The presence of O in liquid Fe at high temperatures influences the partitioning of Si, causing more Si to partition into the metal than would be expected based on lower temperature measurements. Although Si and O are mutually exclusive in Fe metal at <3000 K, the level at which both element concentrations are similar in the liquid metal rises above 1 wt % at >3000 K. We have developed a thermodynamic model based on these experiments that accounts for the interaction between O and Si in the liquid metal. Comparison between this model and the previous results of diamond-anvil cell experiments up to 71 GPa indicates very little pressure dependence but a strong temperature dependence for O and Si partitioning. Our model predicts that subequal concentrations of Si and O, sufficient to explain the outer core density deficit, would have partitioned into core-forming metal if equilibration occurred between the metal and a magma ocean with a bulk silicate Earth composition at an average depth of ~1200km (~50GPa and ~3300K). An O- and Sienriched buoyant layer may have developed at the top of the outer core as a result of subsequent equilibration with the overlying mantle

    The importance of sulfur for the behavior of highly-siderophile elements during Earth’s differentiation

    Get PDF
    AbstractThe highly siderophile elements (HSEs) are widely used as geochemical tracers for Earth’s accretion and core formation history. It is generally considered that core formation strongly depleted the Earth’s mantle in HSEs, which were subsequently replenished by a chondritic late veneer. However, open questions remain regarding the origin of suprachondritic Ru/Ir and Pd/Ir ratios that are thought to be characteristic for the primitive upper mantle. In most core-formation models that address the behavior of the HSEs, light elements such as S entering the core have not been taken into account and high P–T experimental data for S-bearing compositions are scarce. Here we present a comprehensive experimental study to investigate the effect of increasing S concentration in the metal on HSE metal–silicate partitioning at 2473K and 11GPa. We show that the HSEs become less siderophile with increasing S concentrations in the metal, rendering core-forming metal less efficient in removing the HSEs from the mantle if S is present. Furthermore, we investigated the FeS sulfide–silicate partitioning of the HSEs as a function of pressure (7–21GPa) and temperature (2373–2673K). The sulfide–silicate partition coefficient for Pt increases strongly with P, whereas those for Pd, Ru and Ir all decrease. The combined effect is such that above ∼20GPa Ru becomes less chalcophile than Pt, which is opposite to their behavior in the metal–silicate system where Ru is always more siderophile than Pt. The newly determined experimental results are used in a simple 2-stage core formation model that takes into account the effect of S on the behavior of the HSEs during core formation. Results of this model show that segregation of a sulfide liquid to the core from a mantle with substantial HSE concentrations plays a key role in reproducing Earth’s mantle HSE abundances. As Ru and Pd are less chalcophile than Pt and Ir at high P–T, some Ru and Pd remain in the mantle after sulfide segregation. Addition of the late veneer then raised the concentrations of all HSE to their current levels. Suprachondritic Ru/Ir and Pd/Ir ratios of the mantle can thus be explained by a combination of sulfide segregation together with the addition of a late veneer without the need to invoke unknown chondritic material
    • …
    corecore