223 research outputs found

    Effect of In Vitro Exposure of Corticosteroid Drugs, Conventionally Used in AMD Treatment, on Mesenchymal Stem Cells

    Get PDF
    Age-related macular degeneration (AMD) is a leading cause of legal blindness in individuals over 60 years of age, characterized by the dysfunction of retinal pigmented epithelium cells, specifically in the macular area. Despite several treatment options, AMD therapy remains difficult, especially for exudative AMD. Multipotent mesenchymal stem cells (MSCs), with great plasticity and immunomodulant properties, are a promising cell source for cellular therapy and tissue engineering. We evaluated the effects of steroid drugs, often used to treat AMD, in association with MSCs, in view of a possible application together to treat AMD. Morphology, viability, growth kinetics, and immunophenotype were evaluated on healthy donors' MSCs, treated with triamcinolone acetonide, alcohol-free triamcinolone acetonide, micronized intravitreal triamcinolone and dexamethasone at different concentrations, and in a human retinal pigment epithelial cell line supernatant (ARPE-19). The morphological analysis of MSCs in their standard medium showed a negative correlation with drug concentrations, due to the numerous crystals. Dexamethasone was the least toxic corticosteroid used in this study. ARPE-19 seemed to help cells preserve the typical MSC morphology. In conclusion, this in vitro study demonstrated that high doses of corticosteroid drugs have a negative effect on MSCs, reduced in the presence of a conditioned media

    Properties of Human Hemoglobins with Increased Polarity in the α- or β-Heme Pocket CARBONMONOXY DERIVATIVES

    Get PDF
    The spectroscopic, conformational, and functional properties of mutant carbonmonoxy hemoglobins in which either the β-globin Val67(E11) or the α-globin Val62(E11) is replaced by threonine have been investigated. The thermal evolution of the Soret absorption band and the stretching frequency of the bound CO were used to probe the stereodynamic properties of the heme pocket. The functional properties were investigated by kinetic measurements. The spectroscopic and functional data were related to the conformational properties through molecular analysis. The effects of this nonpolar-to-polar isosteric mutation are: (i) increase of heme pocket anharmonic motions, (ii) stabilization of the A 0 conformer in the IR spectrum, (iii) increased CO dissociation rates. The spectroscopic data indicate that for the carbonmonoxy derivatives, the Val → Thr mutation has a larger conformational effect on the β-subunits than on the α-subunits. This is at variance with the deoxy derivatives where the conformational modification was larger in the heme pocket of the α-subunit (Cupane, A., Leone, M., Militello, V., Friedman, R. K., Koley, A. P., Vasquez, G. P., Brinigar, W. S., Karavitis, M., and Fronticelli, C. (1997) J. Biol. Chem. 272, 26271–26278). These effects are attributed to a different electrostatic interaction between Oγ of Thr(E11) and the bound CO molecule. Molecular analysis indicates a more favorable interaction of the bound CO with Thr Oγ in the β-subunit heme pocket

    Trasformazione delle olive in olio: monitoraggio di processo e qualita' del prodotto

    No full text
    Dottorato di ricerca in genio rurale. 11. ciclo. A.a. 1995-98. Tutore P. Spugnoli. Coordinatore M. ZoliConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore