13 research outputs found

    Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease.

    No full text
    International audienceThe role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations

    Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease.

    No full text
    International audienceThe role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations

    Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease

    No full text
    The role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age +/- SD: 66.3 +/- 11.3; mean SYNTAX score: 19.9 +/- 12.3) and 30 healthy subjects (mean age: 61 +/- 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 +/- 0.5 mu mol/L vs 0.53 +/- 0.14 mu mol/L; p < 0.01), HCys (15 +/- 7.6 mu mol/L vs 6.8 +/- 3 mu mol/L, p < 0.0001), and uric acid (242.6 +/- 97 vs 202 +/- 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations

    Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.

    No full text
    Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the l-arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LPD, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-wk-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, endothelial NO synthase (eNOS) protein content, arginase activity, and superoxide anion production. SBP was not different at 5 wk but significantly increased in 8-wk-old offspring of maternal LPD (LP) versus CTRL offspring. In 5-wk-old LP versus CTRL males, endothelium-dependent vasorelaxation was significantly impaired but restored by preincubation with l-arginine or the arginase inhibitor S-(2-boronoethyl)-l-cysteine; NO production was significantly reduced but restored by l-arginine pretreatment; total eNOS protein, dimer-to-monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced but normalized by pretreatment with the NO synthase inhibitor N &lt;sup&gt;ω&lt;/sup&gt; -nitro-l-arginine. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase upregulation and eNOS uncoupling, which precedes the development of HTN
    corecore