5 research outputs found

    Ethanol production by microbial conversion of pentoses from wheat straw hydrolysates

    No full text
    La levure Candida shehatae est le microorganisme modĂšle d’étude choisi. Cette levure peutconvertir le xylose et le glucose en Ă©thanol, contrairement Ă  Saccharomyces cerevisiae, levuretraditionnellement utilisĂ©e dans les procĂ©dĂ©s industriels, qui ne peut convertir le xylose.L’optimisation des performances de production d’éthanol Ă  partir de xylose passe par unemaximisation des trois critĂšres suivants : la productivitĂ© volumique, le titre final et lerendement Ă©thanol/xylose. Pour diriger le flux de carbone vers la production d'Ă©thanol defaçon optimale, le paramĂštre majeur qu’il faut contrĂŽler est le degrĂ© de limitation en oxygĂšne.Les cultures sont rĂ©alisĂ©es sur milieu minĂ©ral en mode fed-batch et conduites en deux phases :aĂ©robie puis limitation en oxygĂšne. Une valeur moyenne de la vitesse spĂ©cifique derespiration (qO2) de 1,19 mmolO2/gX/h permet de maximiser les trois critĂšres deperformances sur xylose : le rendement en Ă©thanol (0,327 gETOH/g-xylose), la productivitĂ©spĂ©cifique maximale (0,22 gETOH/gX/h) et le titre en Ă©thanol final (48,81 g/L). Pour lafermentation du glucose, le rendement en Ă©thanol le plus Ă©levĂ© (0,411 gETOH/g-glucose) estobtenu lorsque qO2 est faible et a pour valeur moyenne 0,30 mmolO2/gX/h; tandis que laproductivitĂ© spĂ©cifique et le titre en Ă©thanol final atteignent les valeurs maximales de 0,35gETOH/gX/h et 54,19 g/L pour respectivement qO2 de 1,7 et de 2,5 mmolO2/gX/h.Pour la consommation simultanĂ©e des deux substrats, un phĂ©nomĂšne de rĂ©pression du glucosesur le xylose est dĂ©montrĂ© par expĂ©rience en chemostat de pulse glucose en rĂ©gime stabilisĂ©sur xylose. La simple prĂ©sence intra-cellulaire des enzymes de la voie du xylose (XR andXDH) ne permet pas la co-consommation efficace des deux sucres et le glucose estprĂ©fĂ©rentiellement consommĂ©.Afin de structurer la connaissance acquise sur le mĂ©tabolisme de C. shehatae et pouvoiroptimiser par simulation les co-cultures C. shehatae / S. cerevisiae pour la productiond’éthanol Ă  partir de mĂ©langes xylose/glucose, un modĂšle cinĂ©tique de C. shehatae estconstruit. Ce modĂšle est validĂ© avec des cultures sur substrats purs (xylose et glucosesĂ©parĂ©s). Un modĂšle cinĂ©tique de co-culture est ensuite dĂ©veloppĂ© de maniĂšre Ă  simulerdiffĂ©rentes stratĂ©gies de fermentation pour l’optimisation de la production d’éthanol surmĂ©lange xylose/glucose de type hydrolysats de paille de blĂ©The yeast Candida shehatae was the model microorganism of the study. This yeast canconvert xylose and glucose into ethanol, unlike Saccharomyces cerevisiae traditionally usedin industrial processes, which cannot convert xylose. Performance optimization of ethanolproduction from xylose is performed through maximization of the following three criteria:volumetric productivity, final ethanol titer and yield of ethanol over xylose. To direct thecarbon flux towards ethanol production, the major parameter which must be controlled is thelevel of oxygen limitation. Cultures are carried out in fed-batch in mineral medium andperformed in two phases: the first one is not limited in oxygen and the second one is oxygenrestricted. A mean value of qO2 equal to 1.19 mmolO2/gX/h maximizes the three criteria ofperformance on xylose: ethanol yield (0.327 gETOH/g-xylose), the maximum specificproductivity (0.22 gETOH/gX/h) and the final ethanol titer (48.81 g/L). For glucosefermentation, ethanol yield is the highest (0.411 gETOH/g-glucose) when qO2 is low as anaverage value of 0.30 mmolO2/gX/h, while the specific productivity and the ethanol final titerreach maximum values of 0.35 gETOH/gX/h and 54.19 g/L for respectively qO2 of 1.7 and2.5 mmolO2/gX/h.For the simultaneous consumption of the two substrates, a phenomenon of glucose repressionover xylose is observed in chemostat experiment with glucose pulse on xylose steady state.The presence of intracellular enzymes of the xylose pathway (XR and XDH) is not sufficientfor efficient co-consumption of both sugars and glucose is preferentially consumed.In order to structure the knowledge obtained on the metabolism of C. shehatae and tooptimize by simulation the co-culture C. shehatae / S. cerevisiae to produce ethanol fromxylose/ glucose mixtures, a kinetic model of C. shehatae is built. This model is validated withpure substrate cultures (xylose and glucose separated). A kinetic model of co-culture is thenbuilt in order to simulate several fermentation strategies to optimize the ethanol productionfrom xylose/glucose mixture similar to wheat straw hydrolysate

    Etude des possibilités de valorisation des pentoses par fermentation alcoolique d'hydrolysats de paille de blé.

    No full text
    La levure Candida shehatae est le microorganisme modÚle d étude choisi. Cette levure peutconvertir le xylose et le glucose en éthanol, contrairement à Saccharomyces cerevisiae, levuretraditionnellement utilisée dans les procédés industriels, qui ne peut convertir le xylose.L optimisation des performances de production d éthanol à partir de xylose passe par unemaximisation des trois critÚres suivants : la productivité volumique, le titre final et lerendement éthanol/xylose. Pour diriger le flux de carbone vers la production d'éthanol defaçon optimale, le paramÚtre majeur qu il faut contrÎler est le degré de limitation en oxygÚne.Les cultures sont réalisées sur milieu minéral en mode fed-batch et conduites en deux phases :aérobie puis limitation en oxygÚne. Une valeur moyenne de la vitesse spécifique derespiration (qO2) de 1,19 mmolO2/gX/h permet de maximiser les trois critÚres deperformances sur xylose : le rendement en éthanol (0,327 gETOH/g-xylose), la productivitéspécifique maximale (0,22 gETOH/gX/h) et le titre en éthanol final (48,81 g/L). Pour lafermentation du glucose, le rendement en éthanol le plus élevé (0,411 gETOH/g-glucose) estobtenu lorsque qO2 est faible et a pour valeur moyenne 0,30 mmolO2/gX/h; tandis que laproductivité spécifique et le titre en éthanol final atteignent les valeurs maximales de 0,35gETOH/gX/h et 54,19 g/L pour respectivement qO2 de 1,7 et de 2,5 mmolO2/gX/h.Pour la consommation simultanée des deux substrats, un phénomÚne de répression du glucosesur le xylose est démontré par expérience en chemostat de pulse glucose en régime stabilisésur xylose. La simple présence intra-cellulaire des enzymes de la voie du xylose (XR andXDH) ne permet pas la co-consommation efficace des deux sucres et le glucose estpréférentiellement consommé.Afin de structurer la connaissance acquise sur le métabolisme de C. shehatae et pouvoiroptimiser par simulation les co-cultures C. shehatae / S. cerevisiae pour la productiond éthanol à partir de mélanges xylose/glucose, un modÚle cinétique de C. shehatae estconstruit. Ce modÚle est validé avec des cultures sur substrats purs (xylose et glucoseséparés). Un modÚle cinétique de co-culture est ensuite développé de maniÚre à simulerdifférentes stratégies de fermentation pour l optimisation de la production d éthanol surmélange xylose/glucose de type hydrolysats de paille de bléThe yeast Candida shehatae was the model microorganism of the study. This yeast canconvert xylose and glucose into ethanol, unlike Saccharomyces cerevisiae traditionally usedin industrial processes, which cannot convert xylose. Performance optimization of ethanolproduction from xylose is performed through maximization of the following three criteria:volumetric productivity, final ethanol titer and yield of ethanol over xylose. To direct thecarbon flux towards ethanol production, the major parameter which must be controlled is thelevel of oxygen limitation. Cultures are carried out in fed-batch in mineral medium andperformed in two phases: the first one is not limited in oxygen and the second one is oxygenrestricted. A mean value of qO2 equal to 1.19 mmolO2/gX/h maximizes the three criteria ofperformance on xylose: ethanol yield (0.327 gETOH/g-xylose), the maximum specificproductivity (0.22 gETOH/gX/h) and the final ethanol titer (48.81 g/L). For glucosefermentation, ethanol yield is the highest (0.411 gETOH/g-glucose) when qO2 is low as anaverage value of 0.30 mmolO2/gX/h, while the specific productivity and the ethanol final titerreach maximum values of 0.35 gETOH/gX/h and 54.19 g/L for respectively qO2 of 1.7 and2.5 mmolO2/gX/h.For the simultaneous consumption of the two substrates, a phenomenon of glucose repressionover xylose is observed in chemostat experiment with glucose pulse on xylose steady state.The presence of intracellular enzymes of the xylose pathway (XR and XDH) is not sufficientfor efficient co-consumption of both sugars and glucose is preferentially consumed.In order to structure the knowledge obtained on the metabolism of C. shehatae and tooptimize by simulation the co-culture C. shehatae / S. cerevisiae to produce ethanol fromxylose/ glucose mixtures, a kinetic model of C. shehatae is built. This model is validated withpure substrate cultures (xylose and glucose separated). A kinetic model of co-culture is thenbuilt in order to simulate several fermentation strategies to optimize the ethanol productionfrom xylose/glucose mixture similar to wheat straw hydrolysatesTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae

    No full text
    Xylose fermentation performance was studied of a previously developed Saccharomyces cerevisiae strain TMB 3057, carrying high xylose reductase (XR) and xylitol dehydrogenase (XDH) activity, overexpressed non-oxidative pentose phosphate pathway (PPP) and deletion of the aldose reductase gene GRE3. The fermentation performance of TMB 3057 was significantly improved by increased ethanol production and reduced xylitol formation compared with the reference strain TMB 3001. The effects of the individual genetic modifications on xylose fermentation were investigated by comparing five isogenic strains with single or combined modifications. All strains with high activity of both XR and XDH had increased ethanol yields and significantly decreased xylitol yields. The presence of glucose further reduced xylitol formation in all studied strains. High activity of the non-oxidative PPP improved the xylose consumption rate. The results indicate that ethanolic xylose fermentation by recombinant S. cerevisiae expressing XR and XDH is governed by the efficiency by which xylose is introduced in the central metabolism

    Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose

    No full text
    International audienceCarbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)−1 h−1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW−1 h−1 allowed maximization of the ethanol yield over xylose (0.327 g g−1), the average productivity (2.2 g l−1 h−1) and the ethanol final titer (48.81 g l−1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g−1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW−1 h−1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l−1 h−1 and 54.19 g l−1 when the specific OUR was the highest
    corecore