49 research outputs found

    ESTIMATION OF RELIABILITY OF SYSTEM OF REVERSE STAMPS WITH USE OF COMPOSITE MATERIALS AND ACCURACY OF PUNCHED PARTS

    Get PDF
    Estimation of reliability of system of reverse stamps with use of composite materials and accuracy of punched parts

    Waving Goodbye to Low-Res: A Diffusion-Wavelet Approach for Image Super-Resolution

    Full text link
    This paper presents a novel Diffusion-Wavelet (DiWa) approach for Single-Image Super-Resolution (SISR). It leverages the strengths of Denoising Diffusion Probabilistic Models (DDPMs) and Discrete Wavelet Transformation (DWT). By enabling DDPMs to operate in the DWT domain, our DDPM models effectively hallucinate high-frequency information for super-resolved images on the wavelet spectrum, resulting in high-quality and detailed reconstructions in image space. Quantitatively, we outperform state-of-the-art diffusion-based SISR methods, namely SR3 and SRDiff, regarding PSNR, SSIM, and LPIPS on both face (8x scaling) and general (4x scaling) SR benchmarks. Meanwhile, using DWT enabled us to use fewer parameters than the compared models: 92M parameters instead of 550M compared to SR3 and 9.3M instead of 12M compared to SRDiff. Additionally, our method outperforms other state-of-the-art generative methods on classical general SR datasets while saving inference time. Finally, our work highlights its potential for various applications

    Are Visual Recognition Models Robust to Image Compression?

    Full text link
    Reducing the data footprint of visual content via image compression is essential to reduce storage requirements, but also to reduce the bandwidth and latency requirements for transmission. In particular, the use of compressed images allows for faster transfer of data, and faster response times for visual recognition in edge devices that rely on cloud-based services. In this paper, we first analyze the impact of image compression using traditional codecs, as well as recent state-of-the-art neural compression approaches, on three visual recognition tasks: image classification, object detection, and semantic segmentation. We consider a wide range of compression levels, ranging from 0.1 to 2 bits-per-pixel (bpp). We find that for all three tasks, the recognition ability is significantly impacted when using strong compression. For example, for segmentation mIoU is reduced from 44.5 to 30.5 mIoU when compressing to 0.1 bpp using the best compression model we evaluated. Second, we test to what extent this performance drop can be ascribed to a loss of relevant information in the compressed image, or to a lack of generalization of visual recognition models to images with compression artefacts. We find that to a large extent the performance loss is due to the latter: by finetuning the recognition models on compressed training images, most of the performance loss is recovered. For example, bringing segmentation accuracy back up to 42 mIoU, i.e. recovering 82% of the original drop in accuracy

    YODA: You Only Diffuse Areas. An Area-Masked Diffusion Approach For Image Super-Resolution

    Full text link
    This work introduces "You Only Diffuse Areas" (YODA), a novel method for partial diffusion in Single-Image Super-Resolution (SISR). The core idea is to utilize diffusion selectively on spatial regions based on attention maps derived from the low-resolution image and the current time step in the diffusion process. This time-dependent targeting enables a more effective conversion to high-resolution outputs by focusing on areas that benefit the most from the iterative refinement process, i.e., detail-rich objects. We empirically validate YODA by extending leading diffusion-based SISR methods SR3 and SRDiff. Our experiments demonstrate new state-of-the-art performance gains in face and general SR across PSNR, SSIM, and LPIPS metrics. A notable finding is YODA's stabilization effect on training by reducing color shifts, especially when induced by small batch sizes, potentially contributing to resource-constrained scenarios. The proposed spatial and temporal adaptive diffusion mechanism opens promising research directions, including developing enhanced attention map extraction techniques and optimizing inference latency based on sparser diffusion.Comment: Brian B. Moser and Stanislav Frolov contributed equall

    Hitchhiker's Guide to Super-Resolution: Introduction and Recent Advances

    Full text link
    With the advent of Deep Learning (DL), Super-Resolution (SR) has also become a thriving research area. However, despite promising results, the field still faces challenges that require further research e.g., allowing flexible upsampling, more effective loss functions, and better evaluation metrics. We review the domain of SR in light of recent advances, and examine state-of-the-art models such as diffusion (DDPM) and transformer-based SR models. We present a critical discussion on contemporary strategies used in SR, and identify promising yet unexplored research directions. We complement previous surveys by incorporating the latest developments in the field such as uncertainty-driven losses, wavelet networks, neural architecture search, novel normalization methods, and the latests evaluation techniques. We also include several visualizations for the models and methods throughout each chapter in order to facilitate a global understanding of the trends in the field. This review is ultimately aimed at helping researchers to push the boundaries of DL applied to SR.Comment: accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 202
    corecore