9 research outputs found

    Addressing Research Bottlenecks to Crop Productivity

    Get PDF
    Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in ‘precompetitive’ space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source–sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.We acknowledge Renee Lafitte (Bill and Melinda Gates Foundation) for helpful feedback on the manuscript and Fatima Escalante for valuable assistance in coordinating edits to the manuscript and its formatting. M.R. acknowledges the International Wheat Yield Partnership (https://iwyp.org/) for establishing a precedent of integrating different research strands in wheat for targeted prebreeding and the Foundation for Food and Agricultural Research (https://foundationfar.org/) for supporting a translational research and prebreeding pipeline at CIMMYT to identify and stack climate resilience traits in wheat

    Transformed Plant Expressing a Mutansucrase and Synthesizing a Modified Starch

    Full text link
    publication date: 2009-12-03; filing date: 2006-01-09The present invention relates to plant cells and plants, which are genetically modified, wherein the genetic modification leads to the expression in plastids of such plant cells and plants of an enzyme having the activity of a mutansucrase. Furthermore, the present invention relates to means and methods for the manufacture of such plant cells and plants. Plant cells and plants of this type synthesise a modified starch. The present invention therefore also relates to the starch synthesised by the plant cells and plants according to the invention as well as to methods for the manufacture of the starch and to the manufacture of starch derivatives of this modified starch

    The da1

    No full text
    Why this research Matters Grain size is potentially yield determining in wheat, controlled by the ubiquitin pathway and negatively regulated by ubiquitin receptor DA1. We analyzed whether increased thousand grain weight in wheat da1 mutant is translated into higher grain yield and whether additional carbon provided by elevated (e)CO2 can be better used by the da1, displaying higher grain sink strength and size. Yield‐related, biomass, grain quality traits, and grain dimensions were analyzed by two‐factorial mixed‐model analysis, regarding genotype and eCO2. da1 increased grain size but reduced spikes and grains per plant, grains per spike, and spikelets per spike, independent of eCO2 treatment, leaving total grain yield unchanged. eCO2 increased yield and grain number additively and independently of da1 but did not overcome the trade‐off between grain size and number observed for da1. eCO2 but not da1 impaired grain quality, strongly decreasing concentrations of several macroelement and microelement. In conclusion, intrinsic stimulation of grain sink strength and grain size, achieved by da1, is not benefitting total yield unless trade‐offs between grain size and numbers can be overcome. The results reveal interactions of yield components in da1‐wheat under ambient and eCO2, thereby uncovering limitations enhancing wheat yield potential

    The da1 mutation in wheat increases grain size under ambient and elevated CO2 but not grain yield due to trade‐off between grain size and grain number

    No full text
    Why this research Matters Grain size is potentially yield determining in wheat, controlled by the ubiquitin pathway and negatively regulated by ubiquitin receptor DA1. We analyzed whether increased thousand grain weight in wheat da1 mutant is translated into higher grain yield and whether additional carbon provided by elevated (e)CO2 can be better used by the da1, displaying higher grain sink strength and size. Yield‐related, biomass, grain quality traits, and grain dimensions were analyzed by two‐factorial mixed‐model analysis, regarding genotype and eCO2. da1 increased grain size but reduced spikes and grains per plant, grains per spike, and spikelets per spike, independent of eCO2 treatment, leaving total grain yield unchanged. eCO2 increased yield and grain number additively and independently of da1 but did not overcome the trade‐off between grain size and number observed for da1. eCO2 but not da1 impaired grain quality, strongly decreasing concentrations of several macroelement and microelement. In conclusion, intrinsic stimulation of grain sink strength and grain size, achieved by da1, is not benefitting total yield unless trade‐offs between grain size and numbers can be overcome. The results reveal interactions of yield components in da1‐wheat under ambient and eCO2, thereby uncovering limitations enhancing wheat yield potential

    Variation in Root System Architecture among the Founder Parents of Two 8-way MAGIC Wheat Populations for Selection in Breeding

    No full text
    Root system architecture (RSA) is a target for breeding crops with effective nutrient and water use. Breeding can use populations designed to map quantitative trait loci (QTL). Here we non-invasively phenotype roots and leaves of the 16 foundation parents of two multi-parent advanced generation inter-cross (MAGIC) populations, covering diversity in spring (CSIRO MAGIC) and winter (NIAB MAGIC) wheats. RSA components varied after 16 days in the upgraded, paper-based imaging platform, GrowScreen-PaGe: lateral root length 2.2 fold; total root length, 1.9 fold; and seminal root angle 1.2 fold. RSA components total and lateral root length had the highest root heritabilities (H2) (H2 = 0.4 for CSIRO and NIAB parents) and good repeatability (r = 0.7) in the GrowScreen-PaGe. These can be combined with leaf length (H2 = 0.8 CSIRO; 0.7 NIAB) and number (H2 = 0.6 CSIRO; 0.7 NIAB) to identify root and shoot QTL to breed for wheats with vigorous RSA and shoot growth at establishment, a critical phase for crop productivity. Time resolved phenotyping of MAGIC wheats also revealed parents to cross in future for growth rate traits (fastest: Robigus–NIAB and AC Barrie–CSIRO; slowest Rialto–NIAB and G204 Xiaoyan54–CSIRO) and root: shoot allocation traits (fast growers grew roots, notably laterals, quicker than leaves, compared to slow growers)

    Transcriptional landscapes of floral meristems in barley

    No full text
    Organ development in plants predominantly occurs postembryonically through combinatorial activity of meristems; therefore, meristem and organ fate are intimately connected. Inflorescence morphogenesis in grasses (Poaceae) is complex and relies on a specialized floral meristem, called spikelet meristem, that gives rise to all other floral organs and ultimately the grain. The fate of the spikelet determines reproductive success and contributes toward yield-related traits in cereal crops. Here, we examined the transcriptional landscapes of floral meristems in the temperate crop barley (Hordeum vulgare L.) using RNA-seq of laser capture microdissected tissues from immature, developing floral structures. Our unbiased, high-resolution approach revealed fundamental regulatory networks, previously unknown pathways, and key regulators of barley floral fate and will equally be indispensable for comparative transcriptional studies of grass meristems

    Overexpression of the WAPO-A1 gene increases the number of spikelets per spike in bread wheat.

    No full text
    Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes
    corecore