14 research outputs found

    Carbon nanotubes : from molecular to macroscopic sensors

    Get PDF
    The components that contribute to Raman spectral shifts of single-wall carbon nanotubes (SWNT’s) embedded in polymer systems have been identified. The temperature dependence of the Raman shift can be separated into the temperature dependence of the nanotubes, the cohesive energy density of the polymer, and the buildup of thermal strain. Discounting all components apart from the thermal strain from the Raman shift-temperature data, it is shown that the mechanical response of single-wall carbon nanotubes in tension and compression are identical. The stress-strain response of SWNT’s can explain recent experimental data for carbon nanotube-composite systems

    Mechanical response of carbon nanotubes under molecular and macroscopic pressures

    No full text
    High hydrostatic pressures were applied to single-wall carbon nanotubes by means of a diamond anvil cell (DAC), and micro-Raman spectroscopy was simultaneously used to monitor the pressure-induced shift of various nanotube bands. The data confirm recent results independently obtained from internal pressure experiments with various liquids, where the peak shifts were considered to arise from compressive forces imposed by the liquids on the nanotubes. It is also shown that the nanotube peak at 1580 cm-1 (the G band) shifts linearly with pressure up to 20 000 atm and deviates from linearity at higher pressure. This deviation is found to be coincident with a drop in Raman intensity for the disorder-induced peak at 2610 cm-1 (the overtone of the D* band), possibly corresponding to the occurrence of reversible flattening of the nanotubes. The independent results presented here confirm the potential of nanotubes as molecular sensors

    Carbon nanotubes : from molecular to macroscopic sensors

    No full text
    The components that contribute to Raman spectral shifts of single-wall carbon nanotubes (SWNT’s) embedded in polymer systems have been identified. The temperature dependence of the Raman shift can be separated into the temperature dependence of the nanotubes, the cohesive energy density of the polymer, and the buildup of thermal strain. Discounting all components apart from the thermal strain from the Raman shift-temperature data, it is shown that the mechanical response of single-wall carbon nanotubes in tension and compression are identical. The stress-strain response of SWNT’s can explain recent experimental data for carbon nanotube-composite systems

    Hyperspectral mapping of human primary and stem cells at cell–matrix interfaces

    No full text
    Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell–matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell–matrix interfaces
    corecore