2 research outputs found

    Elliptic flow of thermal photons in relativistic nuclear collisions

    Get PDF
    We predict the transverse momentum (pT) dependence of elliptic flow of thermal photons for Au+Au collisions at the Relativistic Heavy Ion Collider. We model the system hydrodynamically, assuming formation of a thermalized quark-gluon plasma at some early time, followed by cooling through expansion, hadronization and decoupling. Photons are emitted throughout the expansion history. Contrary to hadron elliptic flow, which hydrodynamics predicts to increase monotonically with pT, the elliptic flow of thermal photons is predicted to first rise and then fall again as pT increases. Photon elliptic flow at high pT is shown to reflect the quark momentum anisotropy at early times when it is small, whereas at low pT it is controlled by the much larger pion momentum anisotropy during the late hadronic emission stage. An interesting structure is predicted at intermediate pT ~ 0.4 GeV/c where photon elliptic flow reflects the momenta and the (compared to pions) reduced v2 of heavy vector mesons in the late hadronic phase.Comment: 4 pages, 4 figures. Amended Fig. 3 and corresponding discussion, with complete explanation of the low-pT structure of photon elliptic flow around pT=400 MeV/

    Photon HBT interferometry for non-central heavy-ion collisions

    Get PDF
    Currently, the only known way to obtain experimental information about the space-time structure of a heavy-ion collision is through 2-particle momentum correlations. Azimuthally sensitive HBT interferometry (Hanbury Brown-Twiss intensity interferometry) can complement elliptic flow measurements by constraining the spatial deformation of the source and its time evolution. Performing these measurements on photons allows us to access the fireball evolution at earlier times than with hadrons. Using ideal hydrodynamics to model the space-time evolution of the collision fireball, we explore theoretically various aspects of 2-photon intensity interferometry with transverse momenta up to 2 GeV, in particular the azimuthal angle dependence of the HBT radii in non-central collisions. We highlight the dual nature of thermal photon emission, in both central and non-central collisions, resulting from the superposition of QGP and hadron resonance gas photon production. This signature is present in both the thermal photon source function and the HBT radii extracted from Gaussian fits of the 2-photon correlation function.Comment: 18 pages, 12 figure
    corecore