5 research outputs found

    Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Get PDF
    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration

    Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling

    Get PDF
    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method

    Myositis with prominent B-cell aggregates causing shrinking lung syndrome in systemic lupus erythematosus: a case report

    No full text
    Abstract Background Shrinking lung syndrome (SLS) is a rare manifestation of systemic lupus erythematosus (SLE) characterized by decreased lung volumes and diaphragmatic weakness in a dyspneic patient. Chest wall dysfunction secondary to pleuritis is the most commonly proposed cause. In this case report, we highlight a new potential mechanism of SLS in SLE, namely diaphragmatic weakness associated with myositis with CD20 positive B-cell aggregates. Case presentation A 51-year-old Caucasian woman was diagnosed with SLE and secondary Sjögren’s syndrome based on a history of pleuritis, constrictive pericarditis, polyarthritis, photosensitivity, alopecia, oral ulcers, xerophthalmia and xerostomia. Serologies were significant for positive antinuclear antibodies, anti-SSA, lupus anticoagulant and anti-cardiolopin. Blood work revealed a low C3 and C4, lymphopenia and thrombocytopenia. She was treated with with low-dose prednisone and remained in remission with oral hydroxychloroquine. Seven years later, she developed mild proximal muscle weakness and exertional dyspnea. Pulmonary function testing revealed a restrictive pattern with small lung volumes. Pulmonary imaging showed elevation of the right hemidiaphragm without evidence of interstitial lung disease. Diaphragmatic ultrasound was suggestive of profound diaphragmatic weakness and dysfunction. Based on these findings, a diagnosis of SLS was made. Her proximal muscle weakness was investigated, and creatine kinase (CK) levels were normal. Electromyography revealed fibrillation potentials in the biceps, iliopsoas, cervical and thoracic paraspinal muscles, and complex repetitive discharges in cervical paraspinal muscles. Biceps muscle biopsy revealed dense endomysial lymphocytic aggregates rich in CD20 positive B cells, perimysial fragmentation with plasma cell-rich perivascular infiltrates, diffuse sarcolemmal upregulation of class I MHC, perifascicular upregulation of class II MHC, and focal sarcolemmal deposition of C5b-9. Treatment with prednisone 15 mg/day and oral mycophenolate mofetil 2 g/day was initiated. Shortness of breath and proximal muscle weakness improved significantly. Conclusion Diaphragmatic weakness was the inaugural manifestation of myositis in this patient with SLE. The spectrum of myologic manifestations of myositis with prominent CD20 positive B-cell aggregates in SLE now includes normal CK levels and diaphragmatic involvement, in association with SLS

    Statin-induced anti-HMGCR myopathy: successful therapeutic strategies for corticosteroid-free remission in 55 patients

    No full text
    Abstract Objective To describe successful therapeutic strategies in statin-induced anti-HMGCR myopathy. Methods Retrospective data from a cohort of 55 patients with statin-induced anti-HMGCR myopathy, sequentially stratified by the presence of proximal weakness, early remission, and corticosteroid and IVIG use at treatment induction, were analyzed for optimal successful induction and maintenance of remission strategies. Results A total of 14 patients achieved remission with a corticosteroid-free induction strategy (25%). In 41 patients treated with corticosteroids, only 4 patients (10%) failed an initial triple steroid/IVIG/steroid-sparing immunosuppressant (SSI) induction strategy. Delay in treatment initiation was independently associated with lower odds of successful maintenance with immunosuppressant monotherapy (OR 0.92, 95% CI 0.85 to 0.97, P = 0.015). While 22 patients (40%) presented with normal strength, only 9 had normal strength at initiation of treatment. Conclusion While corticosteroid-free treatment of anti-HMGCR myopathy is now a safe option in selected cases, initial triple steroid/IVIG/SSI was very efficacious in induction. Delays in treatment initiation and, as a corollary, delays in achieving remission decrease the odds of achieving successful maintenance with an SSI alone. Avoiding such delays, most notably in patients with normal strength, may reset the natural history of anti-HMGCR myopathy from a refractory entity to a treatable disease
    corecore